ipex-llm/python/llm/src/ipex_llm/transformers/models/qwen.py
2025-01-09 15:23:04 +08:00

470 lines
19 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://huggingface.co/Qwen/Qwen-7B-Chat/blob/be72f02dd47087f9035ee9bb5dea571b84785d27/modeling_qwen.py
#
# Copyright (c) Alibaba Cloud.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
from typing import Optional, Tuple, Union, Callable, List
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from transformers.utils import logging
from ipex_llm.transformers.models.common import scaled_dot_product_attention
from ipex_llm.transformers.models.utils import update_past_key_value, should_use_fuse_rope
from ipex_llm.transformers.models.utils import use_quantize_kv_cache
from ipex_llm.transformers.models.utils import rotate_half, SILU
from ipex_llm.transformers.models.utils import mlp_fusion_check
from ipex_llm.utils.common import invalidInputError
from transformers.modeling_outputs import BaseModelOutputWithPast
logger = logging.get_logger(__name__)
def apply_rotary_pos_emb(t, freqs):
cos, sin = freqs
rot_dim = freqs[0].shape[-1]
cos, sin = freqs
t_, t_pass_ = t[..., :rot_dim], t[..., rot_dim:]
t_ = t_.float()
t_pass_ = t_pass_.float()
t_ = (t_ * cos) + (rotate_half(t_) * sin)
return torch.cat((t_, t_pass_), dim=-1).type_as(t)
def qwen_attention_forward(
self,
hidden_states: Optional[Tuple[torch.FloatTensor]],
rotary_pos_emb_list: Optional[List[torch.Tensor]] = None,
layer_past: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
invalidInputError(not self.use_flash_attn and not self.use_cache_quantization,
"flash attn and kv_cache quantization are not supported")
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
past_key_value = (None if layer_past is None
else (layer_past[0].transpose(1, 2), layer_past[1].transpose(1, 2)))
qkv = self.c_attn(hidden_states)
qkv = qkv.view(bsz, q_len, self.num_heads * 3, self.head_dim)
qkv = qkv.transpose(1, 2)
query_states, key_states, value_states = qkv.split([self.num_heads,
self.num_heads,
self.num_heads], dim=1)
kv_seq_len = key_states.shape[2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[2]
# IPEX-LLM OPT: fuse rope
position_ids = rotary_pos_emb_list[-1] # the last one is posisiton_ids
inv_freq = rotary_pos_emb_list[-2]
rotary_pos_emb_list = rotary_pos_emb_list[:-2]
invalidInputError(len(rotary_pos_emb_list) == 1,
"rotary_pos_emb_list's length cannot be larger than 1")
use_fuse_rope = should_use_fuse_rope(hidden_states, position_ids, self.training)
rotary_pos_emb = rotary_pos_emb_list[0]
if use_fuse_rope:
rot_dim = rotary_pos_emb[0].size(-1)
import xe_addons
xe_addons.rotary_half_inplaced(inv_freq, position_ids,
query_states[..., :rot_dim],
key_states[..., :rot_dim])
else:
rotary_pos_emb = [i[:, -q_len:, :, :].transpose(1, 2) for i in rotary_pos_emb]
query_states = apply_rotary_pos_emb(query_states, rotary_pos_emb)
key_states = apply_rotary_pos_emb(key_states, rotary_pos_emb)
if kv_seq_len > self.seq_length and self.use_logn_attn and not self.training:
seq_start = kv_seq_len - q_len
seq_end = kv_seq_len
logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :].transpose(1, 2)
query_states = query_states * logn_tensor.type_as(query_states).expand_as(query_states)
# IPEX-LLM OPT: kv cache and quantzie kv cache
use_quantize_kv = use_quantize_kv_cache(self.c_attn, hidden_states,
self.num_heads, self.num_heads)
key_states, value_states = update_past_key_value(
past_key_value, key_states, value_states,
kv_seq_len, use_quantize_kv, device
)
past_key_value = (key_states.transpose(1, 2),
value_states.transpose(1, 2)) if use_cache else None
# IPEX-LLM OPT: sdpa
attn_weights = None
if q_len > 1 and q_len != kv_seq_len:
causal_mask = torch.tril(
torch.ones((kv_seq_len, kv_seq_len), dtype=torch.bool, device=query_states.device)
).view(1, 1, kv_seq_len, kv_seq_len)
causal_mask = causal_mask[
:, :, kv_seq_len - q_len:kv_seq_len, :kv_seq_len
]
attention_mask = torch.zeros(causal_mask.shape, dtype=query_states.dtype,
device=query_states.device)
attention_mask.masked_fill_(causal_mask.logical_not(),
torch.finfo(attention_mask.dtype).min)
attention_mask = attention_mask.expand([bsz, -1, -1, -1])
else:
attention_mask = None
attn_output = scaled_dot_product_attention(
query_states, key_states, value_states,
attention_mask, q_len == kv_seq_len
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
attn_output = self.c_proj(attn_output)
if output_attentions:
return attn_output, past_key_value, attn_weights
else:
return attn_output, past_key_value
def qwen_attention_forward_registered(
self,
hidden_states: Optional[Tuple[torch.FloatTensor]],
rotary_pos_emb_list: Optional[List[torch.Tensor]] = None,
registered_causal_mask: Optional[torch.Tensor] = None,
layer_past: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# invalidInputError(not self.use_flash_attn and not self.use_cache_quantization,
# "flash attn and kv_cache quantization are not supported")
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
past_key_value = (None if layer_past is None
else (layer_past[0].transpose(1, 2), layer_past[1].transpose(1, 2)))
qkv = self.c_attn(hidden_states)
qkv = qkv.view(bsz, q_len, self.num_heads * 3, self.head_dim)
qkv = qkv.transpose(1, 2)
query_states, key_states, value_states = qkv.split([self.num_heads,
self.num_heads,
self.num_heads], dim=1)
kv_seq_len = key_states.shape[2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[2]
# IPEX-LLM OPT: fuse rope
position_ids = rotary_pos_emb_list[-1] # the last one is posisiton_ids
inv_freq = rotary_pos_emb_list[-2]
rotary_pos_emb_list = rotary_pos_emb_list[:-2]
invalidInputError(len(rotary_pos_emb_list) == 1,
"rotary_pos_emb_list's length cannot be larger than 1")
use_fuse_rope = should_use_fuse_rope(hidden_states, position_ids, self.training)
rotary_pos_emb = rotary_pos_emb_list[0]
if use_fuse_rope:
rot_dim = rotary_pos_emb[0].size(-1)
import xe_addons
xe_addons.rotary_half_inplaced(inv_freq, position_ids,
query_states[..., :rot_dim], key_states[..., :rot_dim])
else:
rotary_pos_emb = [i[:, -q_len:, :, :].transpose(1, 2) for i in rotary_pos_emb]
query_states = apply_rotary_pos_emb(query_states, rotary_pos_emb)
key_states = apply_rotary_pos_emb(key_states, rotary_pos_emb)
if kv_seq_len > self.seq_length and self.use_logn_attn and not self.training:
seq_start = kv_seq_len - q_len
seq_end = kv_seq_len
logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :].transpose(1, 2)
query_states = query_states * logn_tensor.type_as(query_states).expand_as(query_states)
# IPEX-LLM OPT: kv cache and quantzie kv cache
use_quantize_kv = use_quantize_kv_cache(self.c_attn, hidden_states,
self.num_heads, self.num_heads)
key_states, value_states = update_past_key_value(
past_key_value, key_states, value_states,
kv_seq_len, use_quantize_kv, device
)
past_key_value = (key_states.transpose(1, 2),
value_states.transpose(1, 2)) if use_cache else None
# IPEX-LLM OPT: sdpa
attn_weights = None
if q_len > 1 and q_len != kv_seq_len:
causal_mask = registered_causal_mask[
:, :, kv_seq_len - q_len:kv_seq_len, :kv_seq_len
]
attention_mask = torch.zeros(causal_mask.shape, dtype=query_states.dtype,
device=query_states.device)
attention_mask.masked_fill_(causal_mask.logical_not(),
torch.finfo(attention_mask.dtype).min)
attention_mask = attention_mask.expand([bsz, -1, -1, -1])
else:
attention_mask = None
attn_output = scaled_dot_product_attention(
query_states, key_states, value_states,
attention_mask, q_len == kv_seq_len
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
attn_output = self.c_proj(attn_output)
if output_attentions:
return attn_output, past_key_value, attn_weights
else:
return attn_output, past_key_value
def qwen_mlp_forward(self, x: torch.Tensor) -> torch.Tensor:
x_2d = x.view(-1, x.shape[-1])
qtype = getattr(self.w1, "qtype", None)
if mlp_fusion_check(x_2d, qtype, self.training):
import xe_linear
if not x_2d.is_contiguous():
x_2d = x_2d.contiguous()
return self.c_proj(xe_linear.mlp_forward_xpu(
x_2d, self.w2.weight.data, self.w1.weight.data,
x_2d.shape[0], x_2d.shape[1], self.w2.out_len,
SILU, qtype
))
return self.c_proj(F.silu(self.w2(x)) * self.w1(x))
def qwen_model_forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if input_ids is not None and inputs_embeds is not None:
invalidInputError(
False,
"You cannot specify both input_ids and inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size = inputs_embeds.shape[0]
else:
invalidInputError(False, "You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, input_shape[-1])
if position_ids is not None:
position_ids = position_ids.view(-1, input_shape[-1])
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * len(self.h))
else:
if self.use_cache_quantization:
past_length = past_key_values[0][0][0].size(2)
else:
past_length = past_key_values[0][0].size(1)
if position_ids is None:
position_ids = torch.arange(
past_length,
input_shape[-1] + past_length,
dtype=torch.long,
device=device,
)
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
if attention_mask is not None:
if batch_size <= 0:
invalidInputError(False, "batch_size has to be defined and > 0")
attention_mask = attention_mask.view(batch_size, -1)
attention_mask = attention_mask[:, None, None, :]
attention_mask = attention_mask.to(dtype=self.dtype)
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
encoder_attention_mask = None
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
hidden_states = inputs_embeds
kv_seq_len = hidden_states.size()[1]
if past_key_values[0] is not None:
# past key values[0][0] shape: bs * seq_len * head_num * dim
if self.use_cache_quantization:
kv_seq_len += past_key_values[0][0][0].shape[2]
else:
kv_seq_len += past_key_values[0][0].shape[1]
if self.training or not self.use_dynamic_ntk:
ntk_alpha_list = [1.0]
elif kv_seq_len != hidden_states.size()[1]:
ntk_alpha_list = self.rotary_emb._ntk_alpha_cached_list
else:
ntk_alpha_list = []
if attention_mask is not None and kv_seq_len > self.seq_length:
true_seq_lens = attention_mask.squeeze(1).squeeze(1).eq(0).sum(dim=-1,
dtype=torch.int32)
for i in range(hidden_states.size()[0]):
true_seq_len = true_seq_lens[i].item()
ntk_alpha = self.get_ntk_alpha(true_seq_len)
ntk_alpha_list.append(ntk_alpha)
else:
ntk_alpha = self.get_ntk_alpha(kv_seq_len)
ntk_alpha_list.append(ntk_alpha)
self.rotary_emb._ntk_alpha_cached_list = ntk_alpha_list
# ipex-llm changes
rotary_pos_emb_list = [
self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha) for ntk_alpha in ntk_alpha_list
] + [self.rotary_emb.inv_freq.to(self.dtype), position_ids]
# ipex-llm changes ends
hidden_states = self.drop(hidden_states)
output_shape = input_shape + (hidden_states.size(-1),)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. "
"Setting `use_cache=False`..."
)
use_cache = False
presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, use_cache, output_attentions)
return custom_forward
outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
rotary_pos_emb_list,
None,
attention_mask,
head_mask[i],
encoder_hidden_states,
encoder_attention_mask,
)
else:
# ipex-llm changes
curr_device = block.ln_1.weight.device
from accelerate.utils.operations import send_to_device
if rotary_pos_emb_list is not None:
rotary_pos_emb_list = send_to_device(rotary_pos_emb_list, curr_device)
if attention_mask is not None:
attention_mask = send_to_device(attention_mask, curr_device)
if head_mask[i] is not None:
head_mask[i] = send_to_device(head_mask[i], curr_device)
if encoder_hidden_states is not None:
encoder_hidden_states = send_to_device(encoder_hidden_states, curr_device)
if encoder_attention_mask is not None:
encoder_attention_mask = send_to_device(encoder_attention_mask,
curr_device)
# ipex-llm changes ends
outputs = block(
hidden_states,
layer_past=layer_past,
rotary_pos_emb_list=rotary_pos_emb_list,
attention_mask=attention_mask,
head_mask=head_mask[i],
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
hidden_states = self.ln_f(hidden_states)
hidden_states = hidden_states.view(output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v for v in [hidden_states, presents, all_hidden_states] if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)