# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Some parts of this file is adapted from # https://huggingface.co/Qwen/Qwen-7B-Chat/blob/be72f02dd47087f9035ee9bb5dea571b84785d27/modeling_qwen.py # # Copyright (c) Alibaba Cloud. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from typing import Optional, Tuple, Union, Callable, List import torch import torch.nn.functional as F import torch.utils.checkpoint from transformers.utils import logging from ipex_llm.transformers.models.common import scaled_dot_product_attention from ipex_llm.transformers.models.utils import update_past_key_value, should_use_fuse_rope from ipex_llm.transformers.models.utils import use_quantize_kv_cache from ipex_llm.transformers.models.utils import rotate_half, SILU from ipex_llm.transformers.models.utils import mlp_fusion_check from ipex_llm.utils.common import invalidInputError from transformers.modeling_outputs import BaseModelOutputWithPast logger = logging.get_logger(__name__) def apply_rotary_pos_emb(t, freqs): cos, sin = freqs rot_dim = freqs[0].shape[-1] cos, sin = freqs t_, t_pass_ = t[..., :rot_dim], t[..., rot_dim:] t_ = t_.float() t_pass_ = t_pass_.float() t_ = (t_ * cos) + (rotate_half(t_) * sin) return torch.cat((t_, t_pass_), dim=-1).type_as(t) def qwen_attention_forward( self, hidden_states: Optional[Tuple[torch.FloatTensor]], rotary_pos_emb_list: Optional[List[torch.Tensor]] = None, layer_past: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: invalidInputError(not self.use_flash_attn and not self.use_cache_quantization, "flash attn and kv_cache quantization are not supported") bsz, q_len, _ = hidden_states.size() device = hidden_states.device past_key_value = (None if layer_past is None else (layer_past[0].transpose(1, 2), layer_past[1].transpose(1, 2))) qkv = self.c_attn(hidden_states) qkv = qkv.view(bsz, q_len, self.num_heads * 3, self.head_dim) qkv = qkv.transpose(1, 2) query_states, key_states, value_states = qkv.split([self.num_heads, self.num_heads, self.num_heads], dim=1) kv_seq_len = key_states.shape[2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[2] # IPEX-LLM OPT: fuse rope position_ids = rotary_pos_emb_list[-1] # the last one is posisiton_ids inv_freq = rotary_pos_emb_list[-2] rotary_pos_emb_list = rotary_pos_emb_list[:-2] invalidInputError(len(rotary_pos_emb_list) == 1, "rotary_pos_emb_list's length cannot be larger than 1") use_fuse_rope = should_use_fuse_rope(hidden_states, position_ids, self.training) rotary_pos_emb = rotary_pos_emb_list[0] if use_fuse_rope: rot_dim = rotary_pos_emb[0].size(-1) import xe_addons xe_addons.rotary_half_inplaced(inv_freq, position_ids, query_states[..., :rot_dim], key_states[..., :rot_dim]) else: rotary_pos_emb = [i[:, -q_len:, :, :].transpose(1, 2) for i in rotary_pos_emb] query_states = apply_rotary_pos_emb(query_states, rotary_pos_emb) key_states = apply_rotary_pos_emb(key_states, rotary_pos_emb) if kv_seq_len > self.seq_length and self.use_logn_attn and not self.training: seq_start = kv_seq_len - q_len seq_end = kv_seq_len logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :].transpose(1, 2) query_states = query_states * logn_tensor.type_as(query_states).expand_as(query_states) # IPEX-LLM OPT: kv cache and quantzie kv cache use_quantize_kv = use_quantize_kv_cache(self.c_attn, hidden_states, self.num_heads, self.num_heads) key_states, value_states = update_past_key_value( past_key_value, key_states, value_states, kv_seq_len, use_quantize_kv, device ) past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2)) if use_cache else None # IPEX-LLM OPT: sdpa attn_weights = None if q_len > 1 and q_len != kv_seq_len: causal_mask = torch.tril( torch.ones((kv_seq_len, kv_seq_len), dtype=torch.bool, device=query_states.device) ).view(1, 1, kv_seq_len, kv_seq_len) causal_mask = causal_mask[ :, :, kv_seq_len - q_len:kv_seq_len, :kv_seq_len ] attention_mask = torch.zeros(causal_mask.shape, dtype=query_states.dtype, device=query_states.device) attention_mask.masked_fill_(causal_mask.logical_not(), torch.finfo(attention_mask.dtype).min) attention_mask = attention_mask.expand([bsz, -1, -1, -1]) else: attention_mask = None attn_output = scaled_dot_product_attention( query_states, key_states, value_states, attention_mask, q_len == kv_seq_len ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, self.hidden_size) attn_output = self.c_proj(attn_output) if output_attentions: return attn_output, past_key_value, attn_weights else: return attn_output, past_key_value def qwen_attention_forward_registered( self, hidden_states: Optional[Tuple[torch.FloatTensor]], rotary_pos_emb_list: Optional[List[torch.Tensor]] = None, registered_causal_mask: Optional[torch.Tensor] = None, layer_past: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # invalidInputError(not self.use_flash_attn and not self.use_cache_quantization, # "flash attn and kv_cache quantization are not supported") bsz, q_len, _ = hidden_states.size() device = hidden_states.device past_key_value = (None if layer_past is None else (layer_past[0].transpose(1, 2), layer_past[1].transpose(1, 2))) qkv = self.c_attn(hidden_states) qkv = qkv.view(bsz, q_len, self.num_heads * 3, self.head_dim) qkv = qkv.transpose(1, 2) query_states, key_states, value_states = qkv.split([self.num_heads, self.num_heads, self.num_heads], dim=1) kv_seq_len = key_states.shape[2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[2] # IPEX-LLM OPT: fuse rope position_ids = rotary_pos_emb_list[-1] # the last one is posisiton_ids inv_freq = rotary_pos_emb_list[-2] rotary_pos_emb_list = rotary_pos_emb_list[:-2] invalidInputError(len(rotary_pos_emb_list) == 1, "rotary_pos_emb_list's length cannot be larger than 1") use_fuse_rope = should_use_fuse_rope(hidden_states, position_ids, self.training) rotary_pos_emb = rotary_pos_emb_list[0] if use_fuse_rope: rot_dim = rotary_pos_emb[0].size(-1) import xe_addons xe_addons.rotary_half_inplaced(inv_freq, position_ids, query_states[..., :rot_dim], key_states[..., :rot_dim]) else: rotary_pos_emb = [i[:, -q_len:, :, :].transpose(1, 2) for i in rotary_pos_emb] query_states = apply_rotary_pos_emb(query_states, rotary_pos_emb) key_states = apply_rotary_pos_emb(key_states, rotary_pos_emb) if kv_seq_len > self.seq_length and self.use_logn_attn and not self.training: seq_start = kv_seq_len - q_len seq_end = kv_seq_len logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :].transpose(1, 2) query_states = query_states * logn_tensor.type_as(query_states).expand_as(query_states) # IPEX-LLM OPT: kv cache and quantzie kv cache use_quantize_kv = use_quantize_kv_cache(self.c_attn, hidden_states, self.num_heads, self.num_heads) key_states, value_states = update_past_key_value( past_key_value, key_states, value_states, kv_seq_len, use_quantize_kv, device ) past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2)) if use_cache else None # IPEX-LLM OPT: sdpa attn_weights = None if q_len > 1 and q_len != kv_seq_len: causal_mask = registered_causal_mask[ :, :, kv_seq_len - q_len:kv_seq_len, :kv_seq_len ] attention_mask = torch.zeros(causal_mask.shape, dtype=query_states.dtype, device=query_states.device) attention_mask.masked_fill_(causal_mask.logical_not(), torch.finfo(attention_mask.dtype).min) attention_mask = attention_mask.expand([bsz, -1, -1, -1]) else: attention_mask = None attn_output = scaled_dot_product_attention( query_states, key_states, value_states, attention_mask, q_len == kv_seq_len ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, self.hidden_size) attn_output = self.c_proj(attn_output) if output_attentions: return attn_output, past_key_value, attn_weights else: return attn_output, past_key_value def qwen_mlp_forward(self, x: torch.Tensor) -> torch.Tensor: x_2d = x.view(-1, x.shape[-1]) qtype = getattr(self.w1, "qtype", None) if mlp_fusion_check(x_2d, qtype, self.training): import xe_linear if not x_2d.is_contiguous(): x_2d = x_2d.contiguous() return self.c_proj(xe_linear.mlp_forward_xpu( x_2d, self.w2.weight.data, self.w1.weight.data, x_2d.shape[0], x_2d.shape[1], self.w2.out_len, SILU, qtype )) return self.c_proj(F.silu(self.w2(x)) * self.w1(x)) def qwen_model_forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) if input_ids is not None and inputs_embeds is not None: invalidInputError( False, "You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) batch_size = input_ids.shape[0] elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size = inputs_embeds.shape[0] else: invalidInputError(False, "You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, input_shape[-1]) if position_ids is not None: position_ids = position_ids.view(-1, input_shape[-1]) if past_key_values is None: past_length = 0 past_key_values = tuple([None] * len(self.h)) else: if self.use_cache_quantization: past_length = past_key_values[0][0][0].size(2) else: past_length = past_key_values[0][0].size(1) if position_ids is None: position_ids = torch.arange( past_length, input_shape[-1] + past_length, dtype=torch.long, device=device, ) position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) if attention_mask is not None: if batch_size <= 0: invalidInputError(False, "batch_size has to be defined and > 0") attention_mask = attention_mask.view(batch_size, -1) attention_mask = attention_mask[:, None, None, :] attention_mask = attention_mask.to(dtype=self.dtype) attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min encoder_attention_mask = None head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) if inputs_embeds is None: inputs_embeds = self.wte(input_ids) hidden_states = inputs_embeds kv_seq_len = hidden_states.size()[1] if past_key_values[0] is not None: # past key values[0][0] shape: bs * seq_len * head_num * dim if self.use_cache_quantization: kv_seq_len += past_key_values[0][0][0].shape[2] else: kv_seq_len += past_key_values[0][0].shape[1] if self.training or not self.use_dynamic_ntk: ntk_alpha_list = [1.0] elif kv_seq_len != hidden_states.size()[1]: ntk_alpha_list = self.rotary_emb._ntk_alpha_cached_list else: ntk_alpha_list = [] if attention_mask is not None and kv_seq_len > self.seq_length: true_seq_lens = attention_mask.squeeze(1).squeeze(1).eq(0).sum(dim=-1, dtype=torch.int32) for i in range(hidden_states.size()[0]): true_seq_len = true_seq_lens[i].item() ntk_alpha = self.get_ntk_alpha(true_seq_len) ntk_alpha_list.append(ntk_alpha) else: ntk_alpha = self.get_ntk_alpha(kv_seq_len) ntk_alpha_list.append(ntk_alpha) self.rotary_emb._ntk_alpha_cached_list = ntk_alpha_list # ipex-llm changes rotary_pos_emb_list = [ self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha) for ntk_alpha in ntk_alpha_list ] + [self.rotary_emb.inv_freq.to(self.dtype), position_ids] # ipex-llm changes ends hidden_states = self.drop(hidden_states) output_shape = input_shape + (hidden_states.size(-1),) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. " "Setting `use_cache=False`..." ) use_cache = False presents = () if use_cache else None all_self_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, use_cache, output_attentions) return custom_forward outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, rotary_pos_emb_list, None, attention_mask, head_mask[i], encoder_hidden_states, encoder_attention_mask, ) else: # ipex-llm changes curr_device = block.ln_1.weight.device from accelerate.utils.operations import send_to_device if rotary_pos_emb_list is not None: rotary_pos_emb_list = send_to_device(rotary_pos_emb_list, curr_device) if attention_mask is not None: attention_mask = send_to_device(attention_mask, curr_device) if head_mask[i] is not None: head_mask[i] = send_to_device(head_mask[i], curr_device) if encoder_hidden_states is not None: encoder_hidden_states = send_to_device(encoder_hidden_states, curr_device) if encoder_attention_mask is not None: encoder_attention_mask = send_to_device(encoder_attention_mask, curr_device) # ipex-llm changes ends outputs = block( hidden_states, layer_past=layer_past, rotary_pos_emb_list=rotary_pos_emb_list, attention_mask=attention_mask, head_mask=head_mask[i], encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) hidden_states = self.ln_f(hidden_states) hidden_states = hidden_states.view(output_shape) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, presents, all_hidden_states] if v is not None ) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, )