ipex-llm/python/llm/dev/benchmark/all-in-one/README.md
yb-peng 2d88bb9b4b
add test api transformer_int4_fp16_gpu (#10627)
* add test api transformer_int4_fp16_gpu

* update config.yaml and README.md in all-in-one

* modify run.py in all-in-one

* re-order test-api

* re-order test-api in config

* modify README.md in all-in-one

* modify README.md in all-in-one

* modify config.yaml

---------

Co-authored-by: pengyb2001 <arda@arda-arc21.sh.intel.com>
Co-authored-by: ivy-lv11 <zhicunlv@gmail.com>
2024-04-07 15:47:17 +08:00

86 lines
3 KiB
Markdown

# All in One Benchmark Test
All in one benchmark test allows users to test all the benchmarks and record them in a result CSV. Users can provide models and related information in `config.yaml`.
Before running, make sure to have [ipex-llm](../../../../../README.md) installed.
## Dependencies
```bash
pip install omegaconf
pip install pandas
```
Install gperftools to use libtcmalloc.so for MAX GPU to get better performance:
```bash
conda install -c conda-forge -y gperftools=2.10
```
## Config
Config YAML file has following format
```yaml
repo_id:
# - 'THUDM/chatglm2-6b'
- 'meta-llama/Llama-2-7b-chat-hf'
# - 'liuhaotian/llava-v1.5-7b' # requires a LLAVA_REPO_DIR env variables pointing to the llava dir; added only for gpu win related test_api now
local_model_hub: 'path to your local model hub'
warm_up: 1
num_trials: 3
num_beams: 1 # default to greedy search
low_bit: 'sym_int4' # default to use 'sym_int4' (i.e. symmetric int4)
batch_size: 1 # default to 1
in_out_pairs:
- '32-32'
- '1024-128'
test_api:
- "transformer_int4_gpu" # on Intel GPU
# - "transformer_int4_fp16_gpu" # on Intel GPU, use fp16 for non-linear layer
# - "ipex_fp16_gpu" # on Intel GPU
# - "bigdl_fp16_gpu" # on Intel GPU
# - "optimize_model_gpu" # on Intel GPU
# - "transformer_int4_gpu_win" # on Intel GPU for Windows
# - "transformer_int4_fp16_gpu_win" # on Intel GPU for Windows, use fp16 for non-linear layer
# - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows using load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
# - "deepspeed_optimize_model_gpu" # deepspeed autotp on Intel GPU
# - "speculative_gpu"
# - "transformer_int4"
# - "native_int4"
# - "optimize_model"
# - "pytorch_autocast_bf16"
# - "transformer_autocast_bf16"
# - "bigdl_ipex_bf16"
# - "bigdl_ipex_int4"
# - "bigdl_ipex_int8"
# - "speculative_cpu"
# - "deepspeed_transformer_int4_cpu" # on Intel SPR Server
cpu_embedding: False # whether put embedding to CPU (only avaiable now for gpu win related test_api)
streaming: False # whether output in streaming way (only avaiable now for gpu win related test_api)
```
## (Optional) Save model in low bit
If you choose the `transformer_int4_loadlowbit_gpu_win` test API, you will need to save the model in low bit first.
Run `python save.py` will save all models declared in `repo_id` list into low bit models under `local_model_hub` folder.
## Run
run `python run.py`, this will output results to `results.csv`.
For SPR performance, run `bash run-spr.sh`.
> **Note**
>
> The value of `OMP_NUM_THREADS` should be the same as the cpu cores specified by `numactl -C`.
> **Note**
>
> Please install torch nightly version to avoid `Illegal instruction (core dumped)` issue, you can follow the following command to install: `pip install --pre --upgrade torch --index-url https://download.pytorch.org/whl/nightly/cpu`
For ARC performance, run `bash run-arc.sh`.
For MAX GPU performance, run `bash run-max-gpu.sh`.