198 lines
7.7 KiB
Markdown
198 lines
7.7 KiB
Markdown
# Scala User Guide
|
|
|
|
---
|
|
|
|
### **1. Try BigDL Examples**
|
|
This section will show you how to download BigDL prebuild packages and run the build-in examples.
|
|
|
|
#### **1.1 Download and config**
|
|
You can download the BigDL official releases and nightly build from the [Release Page](../release.md). After extracting the prebuild package, you need to set environment variables **BIGDL_HOME** and **SPARK_HOME** as follows:
|
|
|
|
```bash
|
|
export SPARK_HOME=folder path where you extract the Spark package
|
|
export BIGDL_HOME=folder path where you extract the BigDL package
|
|
```
|
|
|
|
#### **1.2 Use Spark interactive shell**
|
|
You can try BigDL using the Spark interactive shell as follows:
|
|
|
|
```bash
|
|
${BIGDL_HOME}/bin/spark-shell-with-dllib.sh
|
|
```
|
|
|
|
You will then see a welcome message like below:
|
|
|
|
```
|
|
Welcome to
|
|
____ __
|
|
/ __/__ ___ _____/ /__
|
|
_\ \/ _ \/ _ `/ __/ '_/
|
|
/___/ .__/\_,_/_/ /_/\_\ version 2.4.6
|
|
/_/
|
|
|
|
Using Scala version 2.11.12 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_112)
|
|
Type in expressions to have them evaluated.
|
|
Type :help for more information.
|
|
```
|
|
|
|
Before you try BigDL APIs, you should use `initNNcontext` to verify your environment:
|
|
|
|
```scala
|
|
scala> import com.intel.analytics.bigdl.dllib.NNContext
|
|
import com.intel.analytics.bigdl.dllib.NNContext
|
|
|
|
scala> val sc = NNContext.initNNContext("Run Example")
|
|
2021-01-26 10:19:52 WARN SparkContext:66 - Using an existing SparkContext; some configuration may not take effect.
|
|
2021-01-26 10:19:53 WARN SparkContext:66 - Using an existing SparkContext; some configuration may not take effect.
|
|
sc: org.apache.spark.SparkContext = org.apache.spark.SparkContext@487f025
|
|
```
|
|
Once the environment is successfully initiated, you'll be able to play with dllib API's.
|
|
For instance, to experiment with the ````dllib.keras```` APIs in dllib, you may try below code:
|
|
```scala
|
|
scala> import com.intel.analytics.bigdl.dllib.keras.layers._
|
|
scala> import com.intel.analytics.bigdl.numeric.NumericFloat
|
|
scala> import com.intel.analytics.bigdl.dllib.utils.Shape
|
|
|
|
scala> val seq = Sequential()
|
|
val layer = ConvLSTM2D(32, 4, returnSequences = true, borderMode = "same",
|
|
inputShape = Shape(8, 40, 40, 32))
|
|
seq.add(layer)
|
|
```
|
|
|
|
#### **1.3 Run BigDL examples**
|
|
|
|
You can run a bigdl-dllib program, e.g., the [Language Model](https://github.com/intel-analytics/BigDL/tree/branch-2.0/scala/dllib/src/main/scala/com/intel/analytics/bigdl/dllib/example/languagemodel), as a standard Spark program (running on either a local machine or a distributed cluster) as follows:
|
|
|
|
1. Prepare the dataset, please refer [Prepare PTB Data](https://github.com/intel-analytics/BigDL/tree/branch-2.0/scala/dllib/src/main/scala/com/intel/analytics/bigdl/dllib/example/languagemodel) for details
|
|
|
|
2. Run the following command:
|
|
```bash
|
|
# Spark local mode
|
|
${BIGDL_HOME}/bin/spark-submit-with-dllib.sh \
|
|
--master local[2] \
|
|
--class com.intel.analytics.bigdl.dllib.example.languagemodel.PTBWordLM \
|
|
${BIGDL_HOME}/jars/bigdl-dllib-0.14.0-SNAPSHOT-jar-with-dependencies.jar \ #change to your jar file if your download is not spark_2.4.3-0.14.0
|
|
-f DATA_PATH \
|
|
-b 4 \
|
|
--numLayers 2 --vocab 100 --hidden 6 \
|
|
--numSteps 3 --learningRate 0.005 -e 1 \
|
|
--learningRateDecay 0.001 --keepProb 0.5
|
|
|
|
# Spark standalone mode
|
|
## ${SPARK_HOME}/sbin/start-master.sh
|
|
## check master URL from http://localhost:8080
|
|
${BIGDL_HOME}/bin/spark-submit-with-dllib.sh \
|
|
--master spark://... \
|
|
--executor-cores cores_per_executor \
|
|
--total-executor-cores total_cores_for_the_job \
|
|
--class com.intel.analytics.bigdl.dllib.example.languagemodel.PTBWordLM \
|
|
${BIGDL_HOME}/jars/bigdl-dllib-0.14.0-SNAPSHOT-jar-with-dependencies.jar \ #change to your jar file if your download is not spark_2.4.3-0.14.0
|
|
-f DATA_PATH \
|
|
-b 4 \
|
|
--numLayers 2 --vocab 100 --hidden 6 \
|
|
--numSteps 3 --learningRate 0.005 -e 1 \
|
|
--learningRateDecay 0.001 --keepProb 0.5
|
|
|
|
# Spark yarn client mode
|
|
${BIGDL_HOME}/bin/spark-submit-with-dllib.sh \
|
|
--master yarn \
|
|
--deploy-mode client \
|
|
--executor-cores cores_per_executor \
|
|
--num-executors executors_number \
|
|
--class com.intel.analytics.bigdl.dllib.example.languagemodel.PTBWordLM \
|
|
${BIGDL_HOME}/jars/bigdl-dllib-0.14.0-SNAPSHOT-jar-with-dependencies.jar \ #change to your jar file if your download is not spark_2.4.3-0.14.0
|
|
-f DATA_PATH \
|
|
-b 4 \
|
|
--numLayers 2 --vocab 100 --hidden 6 \
|
|
--numSteps 3 --learningRate 0.005 -e 1 \
|
|
--learningRateDecay 0.001 --keepProb 0.5
|
|
|
|
# Spark yarn cluster mode
|
|
${BIGDL_HOME}/bin/spark-submit-with-dllib.sh \
|
|
--master yarn \
|
|
--deploy-mode cluster \
|
|
--executor-cores cores_per_executor \
|
|
--num-executors executors_number \
|
|
--class com.intel.analytics.bigdl.dllib.example.languagemodel.PTBWordLM \
|
|
${BIGDL_HOME}/jars/bigdl-dllib-0.14.0-SNAPSHOT-jar-with-dependencies.jar \ #change to your jar file if your download is not spark_2.4.3-0.14.0
|
|
-f DATA_PATH \
|
|
-b 4 \
|
|
--numLayers 2 --vocab 100 --hidden 6 \
|
|
--numSteps 3 --learningRate 0.005 -e 1 \
|
|
--learningRateDecay 0.001 --keepProb 0.5
|
|
```
|
|
|
|
The parameters used in the above command are:
|
|
|
|
* -f: The path where you put your PTB data.
|
|
* -b: The mini-batch size. The mini-batch size is expected to be a multiple of *total cores* used in the job. In this example, the mini-batch size is suggested to be set to *total cores * 4*
|
|
* --learningRate: learning rate for adagrad
|
|
* --learningRateDecay: learning rate decay for adagrad
|
|
* --hidden: hiddensize for lstm
|
|
* --vocabSize: vocabulary size, default 10000
|
|
* --numLayers: numbers of lstm cell, default 2 lstm cells
|
|
* --numSteps: number of words per record in LM
|
|
* --keepProb: the probability to do dropout
|
|
|
|
If you are to run your own program, do remember to do the initialize before call other bigdl-dllib API's, as shown below.
|
|
```scala
|
|
// Scala code example
|
|
import com.intel.analytics.bigdl.dllib.NNContext
|
|
NNContext.initNNContext()
|
|
```
|
|
---
|
|
|
|
### **2. Build BigDL Applications**
|
|
|
|
This section will show you how to build your own deep learning project with BigDL.
|
|
|
|
#### **2.1 Add BigDL dependency**
|
|
##### **2.1.1 official Release**
|
|
Currently, BigDL releases are hosted on maven central; below is an example to add the BigDL dllib dependency to your own project:
|
|
|
|
```xml
|
|
<dependency>
|
|
<groupId>com.intel.analytics.bigdl</groupId>
|
|
<artifactId>bigdl-dllib-spark_2.4.6</artifactId>
|
|
<version>0.14.0</version>
|
|
</dependency>
|
|
```
|
|
|
|
You can find the other SPARK version [here](https://search.maven.org/search?q=bigdl-dllib), such as `spark_3.1.2`.
|
|
|
|
|
|
SBT developers can use
|
|
```sbt
|
|
libraryDependencies += "com.intel.analytics.bigdl" % "bigdl-dllib-spark_2.4.6" % "0.14.0"
|
|
```
|
|
|
|
##### **2.1.2 Nightly Build**
|
|
|
|
Currently, BigDL nightly build is hosted on [SonaType](https://oss.sonatype.org/content/groups/public/com/intel/analytics/bigdl/).
|
|
|
|
To link your application with the latest BigDL nightly build, you should add some dependencies like [official releases](#11-official-release), but change `2.0.0` to the snapshot version (such as 0.14.0-snapshot), and add below repository to your pom.xml.
|
|
|
|
|
|
```xml
|
|
<repository>
|
|
<id>sonatype</id>
|
|
<name>sonatype repository</name>
|
|
<url>https://oss.sonatype.org/content/groups/public/</url>
|
|
<releases>
|
|
<enabled>true</enabled>
|
|
</releases>
|
|
<snapshots>
|
|
<enabled>true</enabled>
|
|
</snapshots>
|
|
</repository>
|
|
```
|
|
|
|
SBT developers can use
|
|
```sbt
|
|
resolvers += "ossrh repository" at "https://oss.sonatype.org/content/repositories/snapshots/"
|
|
```
|
|
|
|
|
|
#### **2.2 Build a Scala project**
|
|
To enable BigDL in project, you should add BigDL to your project's dependencies using maven or sbt. Here is a [simple MLP example](https://github.com/intel-analytics/BigDL/tree/branch-2.0/apps/SimpleMlp) to show you how to use BigDL to build your own deep learning project using maven or sbt, and how to run the simple example in IDEA and spark-submit.
|
|
|