* Refine axolotl 0.3 based on comments * Rename requirements to requirement-xpu * Add comments for paged_adamw_32bit * change lora_r from 8 to 16
69 lines
3.1 KiB
Markdown
69 lines
3.1 KiB
Markdown
# Finetune LLM on Intel GPU using axolotl v0.3.0 without writing code
|
|
|
|
This example demonstrates how to easily run LLM finetuning application using [axolotl v0.3.0](https://github.com/OpenAccess-AI-Collective/axolotl/tree/v0.3.0) and IPEX-LLM 4bit optimizations with [Intel GPUs](../../../README.md). By applying IPEX-LLM patch, you could use axolotl on Intel GPUs using IPEX-LLM optimization without writing code.
|
|
|
|
Note, this example is just used for illustrating related usage and don't guarantee convergence of training.
|
|
|
|
### 0. Requirements
|
|
|
|
To run this example with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../README.md#requirements) for more information.
|
|
|
|
### 1. Install
|
|
|
|
```bash
|
|
conda create -n llm python=3.11
|
|
conda activate llm
|
|
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
|
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
|
# install axolotl v0.3.0
|
|
git clone https://github.com/OpenAccess-AI-Collective/axolotl
|
|
cd axolotl
|
|
git checkout v0.3.0
|
|
cp ../requirements-xpu.txt requirements.txt
|
|
pip install -e .
|
|
```
|
|
|
|
### 2. Configures OneAPI environment variables and accelerate
|
|
|
|
Configures OneAPI environment variables
|
|
|
|
```bash
|
|
source /opt/intel/oneapi/setvars.sh
|
|
```
|
|
|
|
Configures `accelerate` in command line interactively.
|
|
|
|
```bash
|
|
accelerate config
|
|
```
|
|
|
|
Please answer `NO` in option `Do you want to run your training on CPU only (even if a GPU / Apple Silicon device is available)? [yes/NO]:`.
|
|
|
|
After finish accelerate config, check if `use_cpu` is disable (i.e., ` use_cpu: false`) in accelerate config file (`~/.cache/huggingface/accelerate/default_config.yaml`).
|
|
|
|
### 3. Finetune Llama-2-7B
|
|
|
|
This example shows how to run [Alpaca QLoRA finetune on Llama-2](https://github.com/artidoro/qlora) directly on Intel GPU, based on [axolotl Llama-2 qlora example](https://github.com/OpenAccess-AI-Collective/axolotl/blob/v0.3.0/examples/llama-2/qlora.yml). Note that only Llama-2-7B QLora example is verified on Intel ARC 770 with 16GB memory.
|
|
|
|
Modify parameters in `qlora.yml` based on your requirements.
|
|
|
|
```
|
|
accelerate launch finetune.py qlora.yml
|
|
```
|
|
|
|
Output in console
|
|
|
|
```
|
|
{'eval_loss': 0.9382301568984985, 'eval_runtime': 6.2513, 'eval_samples_per_second': 3.199, 'eval_steps_per_second': 3.199, 'epoch': 0.36}
|
|
{'loss': 0.944, 'learning_rate': 0.00019752490425051743, 'epoch': 0.38}
|
|
{'loss': 1.0179, 'learning_rate': 0.00019705675197106016, 'epoch': 0.4}
|
|
{'loss': 0.9346, 'learning_rate': 0.00019654872959986937, 'epoch': 0.41}
|
|
{'loss': 0.9747, 'learning_rate': 0.0001960010458282326, 'epoch': 0.43}
|
|
{'loss': 0.8928, 'learning_rate': 0.00019541392564000488, 'epoch': 0.45}
|
|
{'loss': 0.9317, 'learning_rate': 0.00019478761021918728, 'epoch': 0.47}
|
|
{'loss': 1.0534, 'learning_rate': 0.00019412235685085035, 'epoch': 0.49}
|
|
{'loss': 0.8777, 'learning_rate': 0.00019341843881544372, 'epoch': 0.5}
|
|
{'loss': 0.9447, 'learning_rate': 0.00019267614527653488, 'epoch': 0.52}
|
|
{'loss': 0.9651, 'learning_rate': 0.00019189578116202307, 'epoch': 0.54}
|
|
{'loss': 0.9067, 'learning_rate': 0.00019107766703887764, 'epoch': 0.56}
|
|
```
|