* Add uts for transformers api load_low_bit generation * Small fixes * Remove replit-code for CPU tests due to current load_low_bit issue on MPT * Small change * Small reorganization to llm unit tests on CPU * Small fixes
80 lines
3.1 KiB
Python
80 lines
3.1 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import os
|
|
import pytest
|
|
import tempfile
|
|
import torch
|
|
|
|
from bigdl.llm.transformers import AutoModelForCausalLM
|
|
from transformers import AutoTokenizer
|
|
|
|
|
|
mistral_model_path = os.environ.get('MISTRAL_ORIGIN_PATH')
|
|
|
|
prompt = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
|
|
|
|
@pytest.mark.parametrize("Model, Tokenizer, model_path, prompt", [
|
|
(AutoModelForCausalLM, AutoTokenizer, mistral_model_path, prompt)
|
|
])
|
|
|
|
def test_optimize_model(Model, Tokenizer, model_path, prompt):
|
|
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
|
|
|
model = Model.from_pretrained(model_path,
|
|
load_in_4bit=True,
|
|
optimize_model=False,
|
|
trust_remote_code=True)
|
|
logits_base_model = (model(input_ids)).logits
|
|
|
|
model = Model.from_pretrained(model_path,
|
|
load_in_4bit=True,
|
|
optimize_model=True,
|
|
trust_remote_code=True)
|
|
logits_optimized_model = (model(input_ids)).logits
|
|
diff = abs(logits_base_model - logits_optimized_model).flatten()
|
|
|
|
assert any(diff) is False
|
|
|
|
@pytest.mark.parametrize('prompt, answer', [
|
|
('What is the capital of France?\n\n', 'Paris')
|
|
])
|
|
@pytest.mark.parametrize('Model, Tokenizer, model_path',[
|
|
(AutoModelForCausalLM, AutoTokenizer, mistral_model_path),
|
|
])
|
|
def test_load_low_bit_completion(Model, Tokenizer, model_path, prompt, answer):
|
|
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = Model.from_pretrained(model_path,
|
|
load_in_4bit=True,
|
|
optimize_model=True,
|
|
trust_remote_code=True)
|
|
|
|
with tempfile.TemporaryDirectory() as tempdir:
|
|
model.save_low_bit(tempdir)
|
|
loaded_model = Model.load_low_bit(tempdir,
|
|
optimize_model=True,
|
|
trust_remote_code=True)
|
|
|
|
with torch.inference_mode():
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
|
output = loaded_model.generate(input_ids, max_new_tokens=32)
|
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
|
assert answer in output_str
|
|
|
|
if __name__ == '__main__':
|
|
pytest.main([__file__])
|