63 lines
2.9 KiB
Python
63 lines
2.9 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import torch
|
|
import os
|
|
import time
|
|
import argparse
|
|
from bigdl.llm.transformers import AutoModelForCausalLM, AutoModel
|
|
from transformers import LlamaTokenizer, AutoTokenizer
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Transformer INT4 example')
|
|
parser.add_argument('--repo-id-or-model-path', type=str, default="decapoda-research/llama-7b-hf",
|
|
choices=['decapoda-research/llama-7b-hf', 'THUDM/chatglm-6b'],
|
|
help='The huggingface repo id for the large language model to be downloaded'
|
|
', or the path to the huggingface checkpoint folder')
|
|
args = parser.parse_args()
|
|
model_path = args.repo_id_or_model_path
|
|
if model_path == 'decapoda-research/llama-7b-hf':
|
|
# load_in_4bit=True in bigdl.llm.transformers will convert
|
|
# the relevant layers in the model into int4 format
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True)
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path)
|
|
|
|
input_str = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
|
|
|
|
with torch.inference_mode():
|
|
st = time.time()
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
|
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
end = time.time()
|
|
print('Prompt:', input_str)
|
|
print('Output:', output_str)
|
|
print(f'Inference time: {end-st} s')
|
|
elif model_path == 'THUDM/chatglm-6b':
|
|
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
|
|
input_str = "晚上睡不着应该怎么办"
|
|
|
|
with torch.inference_mode():
|
|
st = time.time()
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
|
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
end = time.time()
|
|
print('Prompt:', input_str)
|
|
print('Output:', output_str)
|
|
print(f'Inference time: {end-st} s')
|