LLM: add readme for transformer examples (#8444)

This commit is contained in:
binbin Deng 2023-07-04 17:25:58 +08:00 committed by GitHub
parent e3e95e92ca
commit 1970bcf14e
3 changed files with 170 additions and 3 deletions

View file

@ -0,0 +1,127 @@
# BigDL-LLM Native INT4 Inference Pipeline for Large Language Model
In this example, we show a pipeline to convert a large language model to BigDL-LLM native INT4 format, and then run inference on the converted INT4 model.
> **Note**: BigDL-LLM native INT4 format currently supports model family LLaMA, GPT-NeoX, BLOOM and StarCoder.
## Prepare Environment
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9
conda activate llm
pip install --pre --upgrade bigdl-llm[all]
```
## Run Example
```bash
python ./native_int4_pipeline.py --thread-num THREAD_NUM --model-family MODEL_FAMILY --repo-id-or-model-path MODEL_PATH
```
arguments info:
- `--thread-num THREAD_NUM`: **required** argument defining the number of threads to use for inference. It is default to be `2`.
- `--model-family MODEL_FAMILY`: **required** argument defining the model family of the large language model (supported option: `'llama'`, `'gptneox'`, `'bloom'`, `'starcoder'`). It is default to be `'llama'`.
- `--repo-id-or-model-path MODEL_PATH`: **required** argument defining the path to the huggingface checkpoint folder for the model.
> **Note** `MODEL_PATH` should fits your inputed `MODEL_FAMILY`.
- `--promp PROMPT`: optional argument defining the prompt to be infered. It is default to be `'Q: What is CPU? A:'`.
- `--tmp-path TMP_PATH`: optional argument defining the path to store intermediate model during the conversion process. It is default to be `'/tmp'`.
## Sample Output for Inference
### Model family LLaMA
```log
-------------------- bigdl-llm based tokenizer --------------------
Inference time: xxxx s
Output:
[' It stands for Central Processing Unit. Its the part of your computer that does the actual computing, or calculating. The first computers were all about adding machines']
-------------------- HuggingFace transformers tokenizer --------------------
Please note that the loading of HuggingFace transformers tokenizer may take some time.
Inference time: xxxx s
Output:
['Central Processing Unit (CPU) is the main component of a computer system, also known as microprocessor. It executes the instructions of software programmes (also']
-------------------- fast forward --------------------
bigdl-llm timings: load time = xxxx ms
bigdl-llm timings: sample time = xxxx ms / 32 runs ( xxxx ms per token)
bigdl-llm timings: prompt eval time = xxxx ms / 9 tokens ( xxxx ms per token)
bigdl-llm timings: eval time = xxxx ms / 31 runs ( xxxx ms per token)
bigdl-llm timings: total time = xxxx ms
Inference time (fast forward): xxxx s
Output:
{'id': 'cmpl-c87e5562-281a-4837-8665-7b122948e0e8', 'object': 'text_completion', 'created': 1688368515, 'model': './bigdl_llm_llama_q4_0.bin', 'choices': [{'text': ' CPU stands for Central Processing Unit. This means that the processors in your computer are what make it run, so if you have a Pentium 4', 'index': 0, 'logprobs': None, 'finish_reason': 'length'}], 'usage': {'prompt_tokens': 9, 'completion_tokens': 32, 'total_tokens': 41}}
```
### Model family GPT-NeoX
```log
-------------------- bigdl-llm based tokenizer --------------------
Inference time: xxxx s
Output:
[' Central processing unit, also known as processor, is a specialized microchip designed to execute all the instructions of computer programs rapidly and efficiently. Most personal computers have one or']
-------------------- HuggingFace transformers tokenizer --------------------
Please note that the loading of HuggingFace transformers tokenizer may take some time.
Inference time: xxxx s
Output:
[' The Central Processing Unit, or CPU, is the component of a computer that executes all instructions for carrying out different functions. It is the brains of the operation, and']
-------------------- fast forward --------------------
Gptneox.generate: prefix-match hit
gptneox_print_timings: load time = xxxx ms
gptneox_print_timings: sample time = xxxx ms / 32 runs ( xxxx ms per run)
gptneox_print_timings: prompt eval time = xxxx ms / 8 tokens ( xxxx ms per token)
gptneox_print_timings: eval time = xxxx ms / 31 runs ( xxxx ms per run)
gptneox_print_timings: total time = xxxx ms
Inference time (fast forward): xxxx s
Output:
{'id': 'cmpl-a20fc4a1-3a00-4e77-a6cf-0dd0da6b9a59', 'object': 'text_completion', 'created': 1686557799, 'model': './bigdl_llm_gptneox_q4_0.bin', 'choices': [{'text': ' Core Processing Unit or Central Processing Unit is the brain of your computer, system software runs on it and handles all important tasks in your computer. i', 'index': 0, 'logprobs': None, 'finish_reason': 'length'}], 'usage': {'prompt_tokens': 9, 'completion_tokens': 32, 'total_tokens': 41}}
```
### Model family BLOOM
```log
-------------------- bigdl-llm based tokenizer --------------------
Inference time: xxxx s
Output:
[' Central Processing Unit</s>The present invention relates to a method of manufacturing an LED device, and more particularly to the manufacture of high-powered LED devices. The inventive']
-------------------- HuggingFace transformers tokenizer --------------------
Please note that the loading of HuggingFace transformers tokenizer may take some time.
Inference time: xxxx s
Output:
[' Central Processing Unit</s>The present invention relates to a method of manufacturing an LED device, and more particularly to the manufacture of high-powered LED devices. The inventive']
-------------------- fast forward --------------------
inference: mem per token = 24471324 bytes
inference: sample time = xxxx ms
inference: evel prompt time = xxxx ms / 1 tokens / xxxx ms per token
inference: predict time = xxxx ms / 4 tokens / xxxx ms per token
inference: total time = xxxx ms
Inference time (fast forward): xxxx s
Output:
{'id': 'cmpl-4ec29030-f0c4-43d6-80b0-5f5fb76c169d', 'object': 'text_completion', 'created': 1687852341, 'model': './bigdl_llm_bloom_q4_0.bin', 'choices': [{'text': ' the Central Processing Unit</s>', 'index': 0, 'logprobs': None, 'finish_reason': None}], 'usage': {'prompt_tokens': 6, 'completion_tokens': 5, 'total_tokens': 11}}
```
### Model family StarCoder
```log
-------------------- bigdl-llm based tokenizer --------------------
Inference time: xxxx s
Output:
[' 2.56 GHz, 2.56 GHz, 2.56 GHz, 2.56 GHz, ']
-------------------- HuggingFace transformers tokenizer --------------------
Please note that the loading of HuggingFace transformers tokenizer may take some time.
Inference time: xxxx s
Output:
[' 2.56 GHz, 2.56 GHz, 2.56 GHz, 2.56 GHz, ']
-------------------- fast forward --------------------
bigdl-llm: mem per token = 313720 bytes
bigdl-llm: sample time = xxxx ms
bigdl-llm: evel prompt time = xxxx ms
bigdl-llm: predict time = xxxx ms / 31 tokens / xxxx ms per token
bigdl-llm: total time = xxxx ms
Inference time (fast forward): xxxx s
Output:
{'id': 'cmpl-72bc4d13-d8c9-4bcb-b3f4-50a69863d534', 'object': 'text_completion', 'created': 1687852580, 'model': './bigdl_llm_starcoder_q4_0.bin', 'choices': [{'text': ' 0.50, B: 0.25, C: 0.125, D: 0.0625', 'index': 0, 'logprobs': None, 'finish_reason': None}], 'usage': {'prompt_tokens': 8, 'completion_tokens': 32, 'total_tokens': 40}}
```

View file

@ -25,7 +25,7 @@ if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Transformer INT4 example')
parser.add_argument('--repo-id-or-model-path', type=str, default="decapoda-research/llama-7b-hf",
choices=['decapoda-research/llama-7b-hf', 'THUDM/chatglm-6b'],
help='The huggingface repo id for the larga language model to be downloaded'
help='The huggingface repo id for the large language model to be downloaded'
', or the path to the huggingface checkpoint folder')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
@ -43,7 +43,8 @@ if __name__ == '__main__':
output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
end = time.time()
print(output_str)
print('Prompt:', input_str)
print('Output:', output_str)
print(f'Inference time: {end-st} s')
elif model_path == 'THUDM/chatglm-6b':
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True)
@ -57,5 +58,6 @@ if __name__ == '__main__':
output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
end = time.time()
print(output_str)
print('Prompt:', input_str)
print('Output:', output_str)
print(f'Inference time: {end-st} s')

View file

@ -0,0 +1,38 @@
# BigDL-LLM Transformers INT4 Inference Pipeline for Large Language Model
In this example, we show a pipeline to apply BigDL-LLM INT4 optimizations to any Hugging Face Transformers model, and then run inference on the optimized INT4 model.
## Prepare Environment
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9
conda activate llm
pip install --pre --upgrade bigdl-llm[all]
```
## Run Example
```bash
python ./transformers_int4_pipeline.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH
```
arguments info:
- `--repo-id-or-model-path MODEL_PATH`: argument defining the huggingface repo id for the large language model to be downloaded, or the path to the huggingface checkpoint folder.
> **Note** In this example, `--repo-id-or-model-path MODEL_PATH` is limited be one of `['decapoda-research/llama-7b-hf', 'THUDM/chatglm-6b']` to better demonstrate English and Chinese support. And it is default to be `'decapoda-research/llama-7b-hf'`.
## Sample Output for Inference
### 'decapoda-research/llama-7b-hf' Model
```log
Prompt: Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun
Output: Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun. She wanted to be a hero. She wanted to be a hero, but she didn't know how. She didn't know how to be a
Inference time: xxxx s
```
### 'THUDM/chatglm-6b' Model
```log
Prompt: 晚上睡不着应该怎么办
Output: 晚上睡不着应该怎么办 晚上睡不着可能会让人感到焦虑和不安,但以下是一些可能有用的建议:
1. 放松身体和思维:尝试进行深呼吸、渐进性
Inference time: xxxx s
```