ipex-llm/python/llm/example/GPU/LLM-Finetuning/HF-PEFT/README.md
Shaojun Liu f37a1f2a81
Upgrade to python 3.11 (#10711)
* create conda env with python 3.11

* recommend to use Python 3.11

* update
2024-04-09 17:41:17 +08:00

37 lines
1.6 KiB
Markdown

# Finetuning on Intel GPU using Hugging Face PEFT code
This example demonstrates how to easily run LLM finetuning application of PEFT use IPEX-LLM 4bit optimizations using [Intel GPUs](../../../README.md). By applying IPEX-LLM patch, you could run Hugging Face PEFT code on Intel GPUs using IPEX-LLM optimization without modification.
Note, this example is just used for illustrating related usage and don't guarantee convergence of training.
### 0. Requirements
To run this example with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../README.md#requirements) for more information.
### 1. Install
```bash
conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pip install transformers==4.34.0 datasets
pip install fire peft==0.5.0
pip install oneccl_bind_pt==2.1.100 --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ # necessary to run distributed finetuning
pip install accelerate==0.23.0
pip install bitsandbytes scipy
```
### 2. Configures OneAPI environment variables
```bash
source /opt/intel/oneapi/setvars.sh
```
### 3. Finetune
This example shows how to run [Alpaca LoRA Training](https://github.com/tloen/alpaca-lora/tree/main) directly on Intel GPU.
```
cd alpaca-lora
python ./finetune.py --base_model "meta-llama/Llama-2-7b-hf" \
--data_path "yahma/alpaca-cleaned"
```