ipex-llm/python/llm/example/pytorch-models/chatglm/README.md
binbin Deng 2d81521019 LLM: add optimize_model examples for llama2 and chatglm (#8894)
* add llama2 and chatglm optimize_model examples

* update default usage

* update command and some descriptions

* move folder and remove general_int4 descriptions

* change folder name
2023-09-12 10:36:29 +08:00

58 lines
3.1 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# ChatGLM
In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate ChatGLM models. For illustration purposes, we utilize the [THUDM/chatglm-6b](https://huggingface.co/THUDM/chatglm-6b) as a reference ChatGLM model.
## Requirements
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
After installing conda, create a Python environment for BigDL-LLM:
```bash
conda create -n llm python=3.9 # recommend to use Python 3.9
conda activate llm
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
```
### 2. Run
After setting up the Python environment, you could run the example by following steps.
#### 2.1 Client
On client Windows machines, it is recommended to run directly with full utilization of all cores:
```powershell
python ./generate.py --prompt 'AI是什么'
```
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
#### 2.2 Server
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
E.g. on Linux,
```bash
# set BigDL-Nano env variables
source bigdl-nano-init
# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./generate.py --prompt 'AI是什么'
```
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
#### 2.3 Arguments Info
In the example, several arguments can be passed to satisfy your requirements:
- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the ChatGLM model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/chatglm-6b'`.
- `--prompt`: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `'AI是什么'`.
- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `32`.
#### 2.4 Sample Output
#### [THUDM/chatglm-6b](https://huggingface.co/THUDM/chatglm-6b)
```log
Inference time: xxxx s
-------------------- Output --------------------
问:AI是什么?
答: AI是人工智能(Artificial Intelligence)的缩写,指的是一种能够模拟人类智能的技术或系统。AI包括机器学习、深度学习、自然语言处理、计算机视觉
```