* torch 2.3 inference docker * Update README.md * add convert code * rename image * remove 2.1 and add graph example * Update README.md
57 lines
2.1 KiB
Python
57 lines
2.1 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# This is modified from https://github.com/intel-sandbox/customer-ai-test-code/blob/main/convert-model-textgen-to-classfication.py
|
|
#
|
|
import torch
|
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig, AutoModelForCausalLM
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser(description='Process some integers.')
|
|
parser.add_argument('--model_path', type=str, help='an string for the device')
|
|
args = parser.parse_args()
|
|
model_path = args.model_path
|
|
|
|
dtype=torch.bfloat16
|
|
num_labels = 5
|
|
|
|
model_name=model_path
|
|
|
|
save_directory = model_name + "-classification"
|
|
|
|
# Initialize the tokenizer
|
|
# Need padding from the left and padding to 1024
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
|
# tokenizer.padding_side = "left"
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
tokenizer.save_pretrained(save_directory)
|
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=dtype, pad_token_id=tokenizer.eos_token_id,)
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
print("text gen model")
|
|
print(model)
|
|
print(config)
|
|
|
|
|
|
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=num_labels, torch_dtype=dtype)
|
|
save_directory = model_name + "-classification"
|
|
model.save_pretrained(save_directory)
|
|
|
|
|
|
model = AutoModelForSequenceClassification.from_pretrained(save_directory, torch_dtype=dtype, pad_token_id=tokenizer.eos_token_id)
|
|
config = AutoConfig.from_pretrained(save_directory)
|
|
print("text classification model")
|
|
print(model)
|
|
print(config)
|