# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This is modified from https://github.com/intel-sandbox/customer-ai-test-code/blob/main/convert-model-textgen-to-classfication.py # import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig, AutoModelForCausalLM import argparse parser = argparse.ArgumentParser(description='Process some integers.') parser.add_argument('--model_path', type=str, help='an string for the device') args = parser.parse_args() model_path = args.model_path dtype=torch.bfloat16 num_labels = 5 model_name=model_path save_directory = model_name + "-classification" # Initialize the tokenizer # Need padding from the left and padding to 1024 tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) # tokenizer.padding_side = "left" tokenizer.pad_token = tokenizer.eos_token tokenizer.save_pretrained(save_directory) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=dtype, pad_token_id=tokenizer.eos_token_id,) config = AutoConfig.from_pretrained(model_name) print("text gen model") print(model) print(config) model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=num_labels, torch_dtype=dtype) save_directory = model_name + "-classification" model.save_pretrained(save_directory) model = AutoModelForSequenceClassification.from_pretrained(save_directory, torch_dtype=dtype, pad_token_id=tokenizer.eos_token_id) config = AutoConfig.from_pretrained(save_directory) print("text classification model") print(model) print(config)