* LLM: add whisper models into nightly test * small fix * small fix * add more whisper models * test all cases * test specific cases * collect the csv * store the resut * to html * small fix * small test * test all cases * modify whisper_csv_to_html
		
			
				
	
	
		
			113 lines
		
	
	
		
			No EOL
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			113 lines
		
	
	
		
			No EOL
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
# Python program to convert CSV to HTML Table
 | 
						|
 | 
						|
import os
 | 
						|
import sys
 | 
						|
import argparse
 | 
						|
import pandas as pd
 | 
						|
 | 
						|
def highlight_vals(val, max=3.0, color1='red', color2='green'):
 | 
						|
    if isinstance(val, float):
 | 
						|
        if val > max:
 | 
						|
            return 'background-color: %s' % color2
 | 
						|
        elif val <= -max:
 | 
						|
            return 'background-color: %s' % color1
 | 
						|
    else:
 | 
						|
        return ''
 | 
						|
 | 
						|
def main():
 | 
						|
    parser = argparse.ArgumentParser(description="convert .csv file to .html file")
 | 
						|
    parser.add_argument("-f", "--folder_path", type=str, dest="folder_path",
 | 
						|
                        help="The directory which stores the .csv file", default="/mnt/disk1/whisper_pr_gpu/")
 | 
						|
    parser.add_argument("-t", "--threshold", type=float, dest="threshold",
 | 
						|
                        help="the threshold of highlight values", default=1.0)
 | 
						|
    args = parser.parse_args()
 | 
						|
 | 
						|
    csv_files = []
 | 
						|
    for file_name in os.listdir(args.folder_path):
 | 
						|
        file_path = os.path.join(args.folder_path, file_name)
 | 
						|
        if os.path.isfile(file_path) and file_name.endswith(".csv"):
 | 
						|
            csv_files.append(file_path)
 | 
						|
    csv_files.sort(reverse=True)
 | 
						|
 | 
						|
    latest_csv = pd.read_csv(csv_files[0], index_col=0)
 | 
						|
    daily_html=csv_files[0].split(".")[0]+".html"
 | 
						|
 | 
						|
    if len(csv_files)>1:
 | 
						|
 | 
						|
        previous_csv = pd.read_csv(csv_files[1], index_col=0)
 | 
						|
 | 
						|
        last1=['']*len(latest_csv.index)
 | 
						|
        diff1=['']*len(latest_csv.index)
 | 
						|
        last2=['']*len(latest_csv.index)
 | 
						|
        diff2=['']*len(latest_csv.index)
 | 
						|
 | 
						|
        WER='WER'
 | 
						|
        RTF='RTF'
 | 
						|
 | 
						|
        for latest_csv_ind,latest_csv_row in latest_csv.iterrows():
 | 
						|
 | 
						|
            latest_csv_model=latest_csv_row['models'].strip()
 | 
						|
            latest_csv_precision=latest_csv_row['precision'].strip()
 | 
						|
            latest_WER=latest_csv_row[WER]
 | 
						|
            latest_RTF=latest_csv_row[RTF]
 | 
						|
 | 
						|
            in_previous_flag=False
 | 
						|
 | 
						|
            for previous_csv_ind,previous_csv_row in previous_csv.iterrows():
 | 
						|
 | 
						|
                previous_csv_model=previous_csv_row['models'].strip()
 | 
						|
                previous_csv_precision=previous_csv_row['precision'].strip()
 | 
						|
 | 
						|
                if latest_csv_model==previous_csv_model and latest_csv_precision==previous_csv_precision:
 | 
						|
 | 
						|
                    previous_WER=previous_csv_row[WER]
 | 
						|
                    previous_RTF=previous_csv_row[RTF]
 | 
						|
                    if previous_WER > 0.0 and previous_RTF > 0.0:
 | 
						|
                        last1[latest_csv_ind]=previous_WER
 | 
						|
                        diff1[latest_csv_ind]=round((previous_WER-latest_WER)*100/previous_WER,2)
 | 
						|
                        last2[latest_csv_ind]=previous_RTF
 | 
						|
                        diff2[latest_csv_ind]=round((previous_RTF-latest_RTF)*100/previous_RTF,2)
 | 
						|
                        in_previous_flag=True
 | 
						|
 | 
						|
            if not in_previous_flag:
 | 
						|
                last1[latest_csv_ind]=pd.NA
 | 
						|
                diff1[latest_csv_ind]=pd.NA
 | 
						|
                last2[latest_csv_ind]=pd.NA
 | 
						|
                diff2[latest_csv_ind]=pd.NA
 | 
						|
 | 
						|
        latest_csv.insert(loc=4,column='last1',value=last1)
 | 
						|
        latest_csv.insert(loc=5,column='diff1(%)',value=diff1)
 | 
						|
        latest_csv.insert(loc=6,column='last2',value=last2)
 | 
						|
        latest_csv.insert(loc=7,column='diff2(%)',value=diff2)
 | 
						|
 | 
						|
        subset1=['diff1(%)','diff2(%)']
 | 
						|
        columns={'WER': '{:.6f}', 'RTF': '{:.6f}', 'last1': '{:.6f}', 'diff1(%)': '{:.6f}','last2': '{:.6f}', 'diff2(%)': '{:.6f}'}
 | 
						|
 | 
						|
        styled_df = latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=1.0, color1='red', color2='green'), subset=subset1)
 | 
						|
        html_output = styled_df.set_table_attributes("border=1").render()
 | 
						|
 | 
						|
        with open(daily_html, 'w') as f:
 | 
						|
            f.write(html_output)
 | 
						|
    else:
 | 
						|
        latest_csv.to_html(daily_html)
 | 
						|
 | 
						|
    return 0
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    sys.exit(main()) |