LLM: add whisper models into nightly test (#10193)

* LLM: add whisper models into nightly test

* small fix

* small fix

* add more whisper models

* test all cases

* test specific cases

* collect the csv

* store the resut

* to html

* small fix

* small test

* test all cases

* modify whisper_csv_to_html
This commit is contained in:
WeiguangHan 2024-03-11 20:00:47 +08:00 committed by GitHub
parent dbcfc5c2fa
commit 17bdb1a60b
4 changed files with 400 additions and 4 deletions

View file

@ -0,0 +1,207 @@
name: LLM Whisper Models Evaluation
# Cancel previous runs in the PR when you push new commits
concurrency:
group: ${{ github.workflow }}-llm-nightly-test-${{ github.event.pull_request.number || github.run_id }}
cancel-in-progress: true
permissions:
contents: read
# Controls when the action will run.
on:
schedule:
- cron: "00 13 * * *" # GMT time, 13:00 GMT == 21:00 China
pull_request:
branches: [main]
paths:
- ".github/workflows/llm-whisper-evaluation.yml"
# Allows you to run this workflow manually from the Actions tab
workflow_dispatch:
inputs:
model_name:
description: 'Model names, separated by comma and must be quoted.'
required: true
type: string
precision:
description: 'Precisions, separated by comma and must be quoted.'
required: true
type: string
task:
description: 'Tasks, separated by comma and must be quoted.'
required: true
type: string
runs-on:
description: 'Labels to filter the runners, separated by comma and must be quoted.'
default: "accuracy"
required: false
type: string
# A workflow run is made up of one or more jobs that can run sequentially or in parallel
jobs:
llm-cpp-build: # please uncomment it for PR tests
uses: ./.github/workflows/llm-binary-build.yml
# Set the testing matrix based on the event (schedule, PR, or manual dispatch)
set-matrix:
runs-on: ubuntu-latest
outputs:
model_name: ${{ steps.set-matrix.outputs.model_name }}
precision: ${{ steps.set-matrix.outputs.precision }}
task: ${{ steps.set-matrix.outputs.task }}
runner: ${{ steps.set-matrix.outputs.runner }}
steps:
- name: set-env
env:
MATRIX_MODEL_NAME: '["whisper-tiny", "whisper-small", "whisper-medium", "whisper-base"]'
MATRIX_TASK: '["librispeech"]'
MATRIX_PRECISION: '["sym_int4", "fp8_e5m2"]'
LABELS: '["self-hosted", "llm", "perf"]'
run: |
echo "model_name=$MATRIX_MODEL_NAME" >> $GITHUB_ENV
echo "task=$MATRIX_TASK" >> $GITHUB_ENV
echo "precision=$MATRIX_PRECISION" >> $GITHUB_ENV
echo "runner=$LABELS" >> $GITHUB_ENV
- name: set-matrix
id: set-matrix
run: |
echo "model_name=$model_name" >> $GITHUB_OUTPUT
echo "task=$task" >> $GITHUB_OUTPUT
echo "precision=$precision" >> $GITHUB_OUTPUT
echo "runner=$runner" >> $GITHUB_OUTPUT
llm-whisper-evaluation:
# if: ${{ github.event.schedule || github.event.inputs.artifact == 'llm-whisper-evaluation' || github.event.inputs.artifact == 'all' }} # please comment it for PR tests
needs: [llm-cpp-build, set-matrix] # please uncomment it for PR tests
# needs: [set-matrix] # please comment it for PR tests
strategy:
fail-fast: false
matrix:
python-version: ["3.9"]
model_name: ${{ fromJson(needs.set-matrix.outputs.model_name) }}
task: ${{ fromJson(needs.set-matrix.outputs.task) }}
precision: ${{ fromJson(needs.set-matrix.outputs.precision) }}
device: [xpu]
runs-on: ${{ fromJson(needs.set-matrix.outputs.runner) }}
env:
ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
ORIGIN_DIR: /mnt/disk1/models
steps:
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
shell: bash
run: |
python -m pip install --upgrade pip
python -m pip install --upgrade wheel
python -m pip install --upgrade pandas
python -m pip install --upgrade datasets
python -m pip install --upgrade evaluate
python -m pip install --upgrade soundfile
python -m pip install --upgrade librosa
python -m pip install --upgrade jiwer
# please uncomment it and comment the "Install BigDL-LLM from Pypi" part for PR tests
- name: Download llm binary
uses: ./.github/actions/llm/download-llm-binary
- name: Run LLM install (all) test
uses: ./.github/actions/llm/setup-llm-env
with:
extra-dependency: "xpu_2.1"
# - name: Install BigDL-LLM from Pypi
# shell: bash
# run: |
# pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
# - name: Test installed xpu version
# shell: bash
# run: |
# source /opt/intel/oneapi/setvars.sh
# bash python/llm/test/run-llm-install-tests.sh
- name: Run whisper evaluation
shell: bash
run: |
source /opt/intel/oneapi/setvars.sh
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
echo "MODEL_PATH=${ORIGIN_DIR}/${{ matrix.model_name }}/" >> "$GITHUB_ENV"
MODEL_PATH=${ORIGIN_DIR}/${{ matrix.model_name }}/
export LIBRISPEECH_DATASET_PATH=/mnt/disk1/datasets/librispeech
cd python/llm/dev/benchmark/whisper
python run_whisper.py --model_path ${MODEL_PATH} --data_type other --device xpu --load_in_low_bit ${{ matrix.precision }} --save_result
- uses: actions/upload-artifact@v3
with:
name: whisper_results
path:
${{ github.workspace }}/python/llm/dev/benchmark/whisper/results/**
llm-whisper-summary:
if: ${{github.event_name == 'schedule' || github.event_name == 'pull_request'}}
needs: [set-matrix, llm-whisper-evaluation]
runs-on: ["self-hosted", "llm", "perf"]
steps:
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
- name: Set up Python 3.9
uses: actions/setup-python@v4
with:
python-version: 3.9
- name: Set output path
shell: bash
run: |
DATE=$(date +%Y-%m-%d)
OUTPUT_PATH="results_$DATE"
echo "OUTPUT_PATH=$OUTPUT_PATH" >> $GITHUB_ENV
NIGHTLY_FOLDER="/mnt/disk1/whisper_nightly_gpu"
echo "NIGHTLY_FOLDER=$NIGHTLY_FOLDER" >> $GITHUB_ENV
PR_FOLDER="/mnt/disk1/whisper_pr_gpu"
echo "PR_FOLDER=$PR_FOLDER" >> $GITHUB_ENV
- name: Download all results for nightly run
if: github.event_name == 'schedule'
uses: actions/download-artifact@v3
with:
name: whisper_results
path: ${{ env.NIGHTLY_FOLDER}}/${{ env.OUTPUT_PATH }}
- name: Download all results for pr run
if: github.event_name == 'pull_request'
uses: actions/download-artifact@v3
with:
name: whisper_results
path: ${{ env.PR_FOLDER}}/${{ env.OUTPUT_PATH }}
- name: Summarize the results for nightly run
if: github.event_name == 'schedule'
shell: bash
run: |
cp -r /mnt/disk1/datasets/whisper_fp16_results/* /mnt/disk1/whisper_nightly_gpu/${{ env.OUTPUT_PATH }}
pip install pandas==1.5.3
python ${{ github.workspace }}/python/llm/dev/benchmark/whisper/whisper_concat_csv.py -i ${{ env.NIGHTLY_FOLDER}}/${{ env.OUTPUT_PATH }} -o ${{ env.NIGHTLY_FOLDER}}
python ${{ github.workspace }}/python/llm/dev/benchmark/whisper/whisper_csv_to_html.py -f ${{ env.NIGHTLY_FOLDER}}
- name: Summarize the results for pull request
if: github.event_name == 'pull_request'
shell: bash
run: |
cp -r /mnt/disk1/datasets/whisper_fp16_results/* /mnt/disk1/whisper_pr_gpu/${{ env.OUTPUT_PATH }}
pip install pandas==1.5.3
python ${{ github.workspace }}/python/llm/dev/benchmark/whisper/whisper_concat_csv.py -i ${{ env.PR_FOLDER}}/${{ env.OUTPUT_PATH }} -o ${{ env.PR_FOLDER}}
python ${{ github.workspace }}/python/llm/dev/benchmark/whisper/whisper_csv_to_html.py -f ${{ env.PR_FOLDER}}

View file

@ -21,12 +21,20 @@ import torch
from evaluate import load
import time
import argparse
import pandas as pd
import os
import csv
from datetime import date
current_dir = os.path.dirname(os.path.realpath(__file__))
def get_args():
parser = argparse.ArgumentParser(description="Evaluate Whisper performance and accuracy")
parser.add_argument('--model_path', required=True, help='pretrained model path')
parser.add_argument('--data_type', required=True, help='clean, other')
parser.add_argument('--device', required=False, help='cpu, xpu')
parser.add_argument('--load_in_low_bit', default='sym_int4', help='Specify whether to load data in low bit format (e.g., 4-bit)')
parser.add_argument('--save_result', action='store_true', help='Save the results to a CSV file')
args = parser.parse_args()
return args
@ -40,7 +48,7 @@ if __name__ == '__main__':
processor = WhisperProcessor.from_pretrained(args.model_path)
forced_decoder_ids = processor.get_decoder_prompt_ids(language='en', task='transcribe')
model = AutoModelForSpeechSeq2Seq.from_pretrained(args.model_path, load_in_low_bit="sym_int4", optimize_model=True).eval().to(args.device)
model = AutoModelForSpeechSeq2Seq.from_pretrained(args.model_path, load_in_low_bit=args.load_in_low_bit, optimize_model=True).eval().to(args.device)
model.config.forced_decoder_ids = None
def map_to_pred(batch):
@ -67,6 +75,24 @@ if __name__ == '__main__':
wer = load("./wer")
speech_length = sum(result["length"][1:])
prc_time = sum(result["time"][1:])
print("Realtime Factor(RTF) is : %.4f" % (prc_time/speech_length))
print("Realtime X(RTX) is : %.2f" % (speech_length/prc_time))
print(f'WER is {100 * wer.compute(references=result["reference"], predictions=result["prediction"])}')
MODEL = args.model_path.split('/')[-2]
RTF = prc_time/speech_length
RTX = speech_length/prc_time
WER = 100 * wer.compute(references=result["reference"], predictions=result["prediction"])
today = date.today()
if args.save_result:
csv_name = f'{current_dir}/results/{MODEL}-{args.data_type}-{args.device}-{args.load_in_low_bit}-{today}.csv'
os.makedirs(os.path.dirname(csv_name), exist_ok=True)
with open(csv_name, mode='a', newline='') as file:
csv_writer = csv.writer(file)
file.seek(0, os.SEEK_END)
if file.tell() == 0:
csv_writer.writerow(["models","precision","WER","RTF"])
csv_writer.writerow([MODEL, args.load_in_low_bit, WER, RTF])
print(f'Results saved to {csv_name}')
print("Realtime Factor(RTF) is : %.4f" % RTF)
print("Realtime X(RTX) is : %.2f" % RTX)
print(f'WER is {WER}')

View file

@ -0,0 +1,50 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Python program to concat CSVs
import os
import sys
import argparse
import pandas as pd
from datetime import date
def main():
parser = argparse.ArgumentParser(description="concat .csv files")
parser.add_argument("-i", "--input_path", type=str, dest="input_path",
help="The directory which stores the original CSV files", default="./")
parser.add_argument("-o", "--output_path", type=str, dest="output_path",
help="The directory which stores the concated CSV file", default="./")
args = parser.parse_args()
csv_files = []
for file_name in os.listdir(args.input_path):
file_path = os.path.join(args.input_path, file_name)
if os.path.isfile(file_path) and file_name.endswith(".csv"):
csv_files.append(file_path)
csv_files.sort()
merged_df = pd.concat([pd.read_csv(file) for file in csv_files], ignore_index=True)
merged_df.reset_index(drop=True, inplace=True)
today = date.today()
csv_name = f'whisper-{today}.csv'
output_file_path = os.path.join(args.output_path, csv_name)
merged_df.to_csv(output_file_path)
if __name__ == "__main__":
sys.exit(main())

View file

@ -0,0 +1,113 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Python program to convert CSV to HTML Table
import os
import sys
import argparse
import pandas as pd
def highlight_vals(val, max=3.0, color1='red', color2='green'):
if isinstance(val, float):
if val > max:
return 'background-color: %s' % color2
elif val <= -max:
return 'background-color: %s' % color1
else:
return ''
def main():
parser = argparse.ArgumentParser(description="convert .csv file to .html file")
parser.add_argument("-f", "--folder_path", type=str, dest="folder_path",
help="The directory which stores the .csv file", default="/mnt/disk1/whisper_pr_gpu/")
parser.add_argument("-t", "--threshold", type=float, dest="threshold",
help="the threshold of highlight values", default=1.0)
args = parser.parse_args()
csv_files = []
for file_name in os.listdir(args.folder_path):
file_path = os.path.join(args.folder_path, file_name)
if os.path.isfile(file_path) and file_name.endswith(".csv"):
csv_files.append(file_path)
csv_files.sort(reverse=True)
latest_csv = pd.read_csv(csv_files[0], index_col=0)
daily_html=csv_files[0].split(".")[0]+".html"
if len(csv_files)>1:
previous_csv = pd.read_csv(csv_files[1], index_col=0)
last1=['']*len(latest_csv.index)
diff1=['']*len(latest_csv.index)
last2=['']*len(latest_csv.index)
diff2=['']*len(latest_csv.index)
WER='WER'
RTF='RTF'
for latest_csv_ind,latest_csv_row in latest_csv.iterrows():
latest_csv_model=latest_csv_row['models'].strip()
latest_csv_precision=latest_csv_row['precision'].strip()
latest_WER=latest_csv_row[WER]
latest_RTF=latest_csv_row[RTF]
in_previous_flag=False
for previous_csv_ind,previous_csv_row in previous_csv.iterrows():
previous_csv_model=previous_csv_row['models'].strip()
previous_csv_precision=previous_csv_row['precision'].strip()
if latest_csv_model==previous_csv_model and latest_csv_precision==previous_csv_precision:
previous_WER=previous_csv_row[WER]
previous_RTF=previous_csv_row[RTF]
if previous_WER > 0.0 and previous_RTF > 0.0:
last1[latest_csv_ind]=previous_WER
diff1[latest_csv_ind]=round((previous_WER-latest_WER)*100/previous_WER,2)
last2[latest_csv_ind]=previous_RTF
diff2[latest_csv_ind]=round((previous_RTF-latest_RTF)*100/previous_RTF,2)
in_previous_flag=True
if not in_previous_flag:
last1[latest_csv_ind]=pd.NA
diff1[latest_csv_ind]=pd.NA
last2[latest_csv_ind]=pd.NA
diff2[latest_csv_ind]=pd.NA
latest_csv.insert(loc=4,column='last1',value=last1)
latest_csv.insert(loc=5,column='diff1(%)',value=diff1)
latest_csv.insert(loc=6,column='last2',value=last2)
latest_csv.insert(loc=7,column='diff2(%)',value=diff2)
subset1=['diff1(%)','diff2(%)']
columns={'WER': '{:.6f}', 'RTF': '{:.6f}', 'last1': '{:.6f}', 'diff1(%)': '{:.6f}','last2': '{:.6f}', 'diff2(%)': '{:.6f}'}
styled_df = latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=1.0, color1='red', color2='green'), subset=subset1)
html_output = styled_df.set_table_attributes("border=1").render()
with open(daily_html, 'w') as f:
f.write(html_output)
else:
latest_csv.to_html(daily_html)
return 0
if __name__ == "__main__":
sys.exit(main())