293 lines
11 KiB
Python
293 lines
11 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# Some parts of this file is adapted from
|
|
# https://huggingface.co/internlm/internlm-chat-7b/blob/659ed911eec1e26810f9854f19c5ec27854e9cf3/modeling_internlm.py
|
|
# which is licensed under Apache License 2.0:
|
|
#
|
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" PyTorch InternLM model."""
|
|
import math
|
|
from typing import Optional, Tuple
|
|
|
|
import torch
|
|
import torch.utils.checkpoint
|
|
from torch import nn
|
|
from ipex_llm.utils.common import invalidInputError
|
|
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, \
|
|
append_kv_cache, is_enough_kv_cache_room_4_31
|
|
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb
|
|
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu
|
|
|
|
import os
|
|
|
|
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
|
|
|
|
|
|
def internlm_attention_forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor]=None,
|
|
position_ids: Optional[torch.LongTensor]=None,
|
|
past_key_value: Optional[Tuple[torch.Tensor]]=None,
|
|
output_attentions: bool=False,
|
|
use_cache: bool=False,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
bsz, q_len, _ = hidden_states.size()
|
|
device = hidden_states.device
|
|
query_states = self.q_proj(hidden_states) \
|
|
.view(bsz, q_len, self.num_heads, self.head_dim) \
|
|
.transpose(1, 2)
|
|
key_states = self.k_proj(hidden_states) \
|
|
.view(bsz, q_len, self.num_heads, self.head_dim) \
|
|
.transpose(1, 2)
|
|
value_states = self.v_proj(hidden_states) \
|
|
.view(bsz, q_len, self.num_heads, self.head_dim) \
|
|
.transpose(1, 2)
|
|
|
|
kv_seq_len = key_states.shape[-2]
|
|
enough_kv_room = True
|
|
if past_key_value is not None:
|
|
enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value, seq_len=kv_seq_len)
|
|
kv_seq_len += past_key_value[0].shape[-2]
|
|
if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad):
|
|
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
|
|
key_states,
|
|
position_ids,
|
|
"internlm")
|
|
else:
|
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
|
query_states, key_states = apply_rotary_pos_emb(
|
|
query_states,
|
|
key_states,
|
|
cos,
|
|
sin,
|
|
position_ids,
|
|
"internlm")
|
|
# [bsz, nh, t, hd]
|
|
|
|
if past_key_value is not None:
|
|
# reuse k, v, self_attention
|
|
cache_k = past_key_value[0]
|
|
cache_v = past_key_value[1]
|
|
if not enough_kv_room:
|
|
# allocate new
|
|
new_cache_k, new_cache_v = extend_kv_cache(
|
|
bsz,
|
|
self.num_heads,
|
|
self.head_dim,
|
|
cache_k.size(2),
|
|
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
|
dtype=cache_k.dtype,
|
|
device=device
|
|
)
|
|
new_cache_k[:] = cache_k
|
|
new_cache_v[:] = cache_v
|
|
cache_k = new_cache_k
|
|
cache_v = new_cache_v
|
|
|
|
key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states)
|
|
|
|
elif use_cache:
|
|
max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
|
|
new_key_states, new_value_states = init_kv_cache(
|
|
bsz,
|
|
self.num_heads,
|
|
self.head_dim,
|
|
kv_seq_len,
|
|
max_cache_length,
|
|
dtype=key_states.dtype,
|
|
device=device
|
|
)
|
|
new_key_states[:] = key_states
|
|
new_value_states[:] = value_states
|
|
key_states = new_key_states
|
|
value_states = new_value_states
|
|
|
|
past_key_value = (key_states, value_states) if use_cache else None
|
|
|
|
attn_weights = torch.matmul(query_states,
|
|
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
|
invalidInputError(
|
|
False,
|
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, "
|
|
f"but is {attn_weights.size()}"
|
|
)
|
|
|
|
if attention_mask is not None:
|
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
|
invalidInputError(
|
|
False,
|
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, "
|
|
f"but is {attention_mask.size()}"
|
|
)
|
|
attn_weights = attn_weights + attention_mask
|
|
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
|
|
|
|
# upcast attention to fp32
|
|
attn_weights = nn.functional.softmax(attn_weights,
|
|
dim=-1, dtype=torch.float32).to(query_states.dtype)
|
|
attn_output = torch.matmul(attn_weights, value_states)
|
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
|
invalidInputError(
|
|
False,
|
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, "
|
|
f"but is {attn_output.size()}"
|
|
)
|
|
|
|
attn_output = attn_output.transpose(1, 2)
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
|
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
if not output_attentions:
|
|
attn_weights = None
|
|
|
|
return attn_output, attn_weights, past_key_value
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
"""
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).
|
|
The hidden states go from (batch,
|
|
num_key_value_heads, seqlen, head_dim) to
|
|
(batch, num_attention_heads, seqlen, head_dim)
|
|
"""
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
|
if n_rep == 1:
|
|
return hidden_states
|
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads,
|
|
n_rep, slen, head_dim)
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
|
|
|
|
|
def internlm2_attention_forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor]=None,
|
|
position_ids: Optional[torch.LongTensor]=None,
|
|
past_key_value: Optional[Tuple[torch.Tensor]]=None,
|
|
output_attentions: bool=False,
|
|
use_cache: bool=False,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
qkv_states = self.wqkv(hidden_states)
|
|
from einops import rearrange
|
|
qkv_states = rearrange(
|
|
qkv_states,
|
|
"b q (h gs d) -> b q h gs d",
|
|
gs=2 + self.num_key_value_groups,
|
|
d=self.head_dim,
|
|
)
|
|
|
|
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
|
query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
|
|
key_states = qkv_states[..., -2, :]
|
|
value_states = qkv_states[..., -1, :]
|
|
|
|
query_states = query_states.transpose(1, 2)
|
|
key_states = key_states.transpose(1, 2)
|
|
value_states = value_states.transpose(1, 2)
|
|
|
|
kv_seq_len = key_states.shape[-2]
|
|
if past_key_value is not None:
|
|
kv_seq_len += past_key_value[0].shape[-2]
|
|
if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad):
|
|
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
|
|
key_states,
|
|
position_ids,
|
|
"internlm")
|
|
else:
|
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
|
# query_states, key_states = apply_rotary_pos_emb(query_states,
|
|
# key_states, cos, sin, position_ids)
|
|
query_states, key_states = apply_rotary_pos_emb(
|
|
query_states,
|
|
key_states,
|
|
cos,
|
|
sin,
|
|
position_ids,
|
|
"internlm")
|
|
|
|
if past_key_value is not None:
|
|
# reuse k, v, self_attention
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
|
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
|
|
|
past_key_value = (key_states, value_states) if use_cache else None
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
|
invalidInputError(
|
|
False,
|
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, "
|
|
f"but is {attn_weights.size()}"
|
|
)
|
|
|
|
if attention_mask is not None:
|
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
|
invalidInputError(
|
|
False,
|
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, "
|
|
f"but is {attention_mask.size()}"
|
|
)
|
|
attn_weights = attn_weights + attention_mask
|
|
|
|
# upcast attention to fp32
|
|
attn_weights = nn.functional.softmax(attn_weights,
|
|
dim=-1, dtype=torch.float32).to(query_states.dtype)
|
|
attn_output = torch.matmul(attn_weights, value_states)
|
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
|
invalidInputError(
|
|
False,
|
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, "
|
|
f"but is {attn_output.size()}"
|
|
)
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
|
|
|
attn_output = self.wo(attn_output)
|
|
|
|
if not output_attentions:
|
|
attn_weights = None
|
|
|
|
return attn_output, attn_weights, past_key_value
|