# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Some parts of this file is adapted from # https://huggingface.co/internlm/internlm-chat-7b/blob/659ed911eec1e26810f9854f19c5ec27854e9cf3/modeling_internlm.py # which is licensed under Apache License 2.0: # # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch InternLM model.""" import math from typing import Optional, Tuple import torch import torch.utils.checkpoint from torch import nn from ipex_llm.utils.common import invalidInputError from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, \ append_kv_cache, is_enough_kv_cache_room_4_31 from ipex_llm.transformers.models.utils import apply_rotary_pos_emb from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu import os KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256)) def internlm_attention_forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor]=None, position_ids: Optional[torch.LongTensor]=None, past_key_value: Optional[Tuple[torch.Tensor]]=None, output_attentions: bool=False, use_cache: bool=False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() device = hidden_states.device query_states = self.q_proj(hidden_states) \ .view(bsz, q_len, self.num_heads, self.head_dim) \ .transpose(1, 2) key_states = self.k_proj(hidden_states) \ .view(bsz, q_len, self.num_heads, self.head_dim) \ .transpose(1, 2) value_states = self.v_proj(hidden_states) \ .view(bsz, q_len, self.num_heads, self.head_dim) \ .transpose(1, 2) kv_seq_len = key_states.shape[-2] enough_kv_room = True if past_key_value is not None: enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value, seq_len=kv_seq_len) kv_seq_len += past_key_value[0].shape[-2] if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad): query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states, key_states, position_ids, "internlm") else: cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb( query_states, key_states, cos, sin, position_ids, "internlm") # [bsz, nh, t, hd] if past_key_value is not None: # reuse k, v, self_attention cache_k = past_key_value[0] cache_v = past_key_value[1] if not enough_kv_room: # allocate new new_cache_k, new_cache_v = extend_kv_cache( bsz, self.num_heads, self.head_dim, cache_k.size(2), kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH, dtype=cache_k.dtype, device=device ) new_cache_k[:] = cache_k new_cache_v[:] = cache_v cache_k = new_cache_k cache_v = new_cache_v key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states) elif use_cache: max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH new_key_states, new_value_states = init_kv_cache( bsz, self.num_heads, self.head_dim, kv_seq_len, max_cache_length, dtype=key_states.dtype, device=device ) new_key_states[:] = key_states new_value_states[:] = value_states key_states = new_key_states value_states = new_value_states past_key_value = (key_states, value_states) if use_cache else None attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): invalidInputError( False, f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, " f"but is {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): invalidInputError( False, f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, " f"but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)) # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): invalidInputError( False, f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, " f"but is {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def internlm2_attention_forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor]=None, position_ids: Optional[torch.LongTensor]=None, past_key_value: Optional[Tuple[torch.Tensor]]=None, output_attentions: bool=False, use_cache: bool=False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() qkv_states = self.wqkv(hidden_states) from einops import rearrange qkv_states = rearrange( qkv_states, "b q (h gs d) -> b q h gs d", gs=2 + self.num_key_value_groups, d=self.head_dim, ) query_states = qkv_states[..., : self.num_key_value_groups, :] query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d") key_states = qkv_states[..., -2, :] value_states = qkv_states[..., -1, :] query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad): query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states, key_states, position_ids, "internlm") else: cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) # query_states, key_states = apply_rotary_pos_emb(query_states, # key_states, cos, sin, position_ids) query_states, key_states = apply_rotary_pos_emb( query_states, key_states, cos, sin, position_ids, "internlm") if past_key_value is not None: # reuse k, v, self_attention key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) past_key_value = (key_states, value_states) if use_cache else None key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): invalidInputError( False, f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, " f"but is {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): invalidInputError( False, f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, " f"but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): invalidInputError( False, f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, " f"but is {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.wo(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value