111 lines
		
	
	
		
			No EOL
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			111 lines
		
	
	
		
			No EOL
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
# Chronos Tutorial
 | 
						|
 | 
						|
- [**Predict Number of Taxi Passengers with Chronos Forecaster**](./chronos-tsdataset-forecaster-quickstart.html)
 | 
						|
 | 
						|
    > [Run in Google Colab][chronos_nyc_taxi_tsdataset_forecaster_colab]  [View source on GitHub][chronos_nyc_taxi_tsdataset_forecaster]
 | 
						|
 | 
						|
    In this guide we will demonstrate how to use _Chronos TSDataset_ and _Chronos Forecaster_ for time series processing and predict number of taxi passengers.
 | 
						|
 | 
						|
---------------------------
 | 
						|
 | 
						|
- [**Tune a Forecasting Task Automatically**](./chronos-autotsest-quickstart.html)
 | 
						|
 | 
						|
    > [Run in Google Colab][chronos_autots_nyc_taxi_colab]  [View source on GitHub][chronos_autots_nyc_taxi]
 | 
						|
 | 
						|
    In this guide we will demonstrate how to use _Chronos AutoTSEstimator_ and _Chronos TSPipeline_ to auto tune a time seires forecasting task and handle the whole model development process easily.
 | 
						|
 | 
						|
---------------------------
 | 
						|
 | 
						|
- [**Detect Anomaly Point in Real Time Traffic Data**](./chronos-anomaly-detector.html)
 | 
						|
 | 
						|
    > [Run in Google Colab][chronos_minn_traffic_anomaly_detector_colab]  [View source on GitHub][chronos_minn_traffic_anomaly_detector]
 | 
						|
 | 
						|
    In this guide we will demonstrate how to use _Chronos Anomaly Detector_ for real time traffic data from the Twin Cities Metro area in Minnesota anomaly detection.
 | 
						|
 | 
						|
---------------------------
 | 
						|
 | 
						|
- [**Tune a Customized Time Series Forecasting Model with AutoTSEstimator.**][network_traffic_autots_customized_model]
 | 
						|
 | 
						|
    > [View source on GitHub][network_traffic_autots_customized_model]
 | 
						|
 | 
						|
    In this notebook, we demonstrate a reference use case where we use the network traffic KPI(s) in the past to predict traffic KPI(s) in the future. We demonstrate how to use _AutoTSEstimator_ to adjust the parameters of a customized model.
 | 
						|
 | 
						|
---------------------------
 | 
						|
 | 
						|
- [**Auto Tune the Prediction of Network Traffic at the Transit Link of WIDE**][network_traffic_autots_forecasting]
 | 
						|
 | 
						|
    > [View source on GitHub][network_traffic_autots_forecasting]
 | 
						|
 | 
						|
    In this notebook, we demostrate a reference use case where we use the network traffic KPI(s) in the past to predict traffic KPI(s) in the future. We demostrate how to use _AutoTS_ in project [Chronos][chronos] to do time series forecasting in an automated and distributed way.
 | 
						|
 | 
						|
---------------------------
 | 
						|
 | 
						|
- [**Multivariate Forecasting of Network Traffic at the Transit Link of WIDE**][network_traffic_model_forecasting]
 | 
						|
 | 
						|
    > [View source on GitHub][network_traffic_model_forecasting]
 | 
						|
 | 
						|
    In this notebook, we demonstrate a reference use case where we use the network traffic KPI(s) in the past to predict traffic KPI(s) in the future. We demostrate how to do univariate forecasting (predict only 1 series), and multivariate forecasting (predicts more than 1 series at the same time) using Project [Chronos][chronos].
 | 
						|
 | 
						|
---------------------------
 | 
						|
 | 
						|
- [**Multistep Forecasting of Network Traffic at the Transit Link of WIDE**][network_traffic_multivariate_multistep_tcnforecaster]
 | 
						|
 | 
						|
    > [View source on GitHub][network_traffic_multivariate_multistep_tcnforecaster]
 | 
						|
 | 
						|
    In this notebook, we demonstrate a reference use case where we use the network traffic KPI(s) in the past to predict traffic KPI(s) in the future. We demostrate how to do multivariate multistep forecasting using Project [Chronos][chronos].
 | 
						|
 | 
						|
---------------------------
 | 
						|
 | 
						|
- [**Stock Price Prediction with LSTMForecaster**][stock_prediction]
 | 
						|
 | 
						|
    > [View source on GitHub][stock_prediction]
 | 
						|
 | 
						|
    In this notebook, we demonstrate a reference use case where we use historical stock price data to predict the future price. The dataset we use is the daily stock price of S&P500 stocks during 2013-2018 (data source). We demostrate how to do univariate forecasting using the past 80% of the total days' MMM price to predict the future 20% days' daily price.
 | 
						|
 | 
						|
    Reference: *<https://github.com/jwkanggist/tf-keras-stock-pred>*
 | 
						|
 | 
						|
---------------------------
 | 
						|
 | 
						|
- [**Stock Price Prediction with ProphetForecaster and AutoProphet**][stock_prediction_prophet]
 | 
						|
 | 
						|
    > [View source on GitHub][stock_prediction_prophet]
 | 
						|
 | 
						|
    In this notebook, we demonstrate a reference use case where we use historical stock price data to predict the future price using the ProphetForecaster and AutoProphet. The dataset we use is the daily stock price of S&P500 stocks during 2013-2018 [data source](https://www.kaggle.com/camnugent/sandp500/).
 | 
						|
 | 
						|
    Reference: *<https://facebook.github.io/prophet>*, *<https://github.com/jwkanggist/tf-keras-stock-pred>*
 | 
						|
 | 
						|
---------------------------
 | 
						|
 | 
						|
- [**Unsupervised Anomaly Detection for CPU Usage**][AIOps_anomaly_detect_unsupervised]
 | 
						|
 | 
						|
    > [View source on GitHub][AIOps_anomaly_detect_unsupervised]
 | 
						|
 | 
						|
    We demonstrates how to perform anomaly detection based on Chronos's built-in [DBScanDetector][DBScan], [AEDetector][AE] and [ThresholdDetector][Threshold].
 | 
						|
 | 
						|
---------------------------
 | 
						|
 | 
						|
- [**Anomaly Detection for CPU Usage Based on Forecasters**][AIOps_anomaly_detect_unsupervised_forecast_based]
 | 
						|
 | 
						|
    > [View source on GitHub][AIOps_anomaly_detect_unsupervised_forecast_based]
 | 
						|
 | 
						|
    We demonstrates how to leverage Chronos's built-in models ie. MTNet, to do time series forecasting. Then perform anomaly detection on predicted value with [ThresholdDetector][Threshold].
 | 
						|
 | 
						|
 | 
						|
[DBScan]: <../../PythonAPI/Chronos/anomaly_detectors.html#dbscandetector>
 | 
						|
[AE]: <../../PythonAPI/Chronos/anomaly_detectors.html#aedetector>
 | 
						|
[Threshold]: <../../PythonAPI/Chronos/anomaly_detectors.html#thresholddetector>
 | 
						|
[chronos]: <https://github.com/intel-analytics/bigdl/tree/main/python/chronos/src/bigdl/chronos>
 | 
						|
[chronos_nyc_taxi_tsdataset_forecaster_colab]: <https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/python/chronos/colab-notebook/chronos_nyc_taxi_tsdataset_forecaster.ipynb>
 | 
						|
[chronos_nyc_taxi_tsdataset_forecaster]: <https://github.com/intel-analytics/BigDL/blob/main/python/chronos/colab-notebook/chronos_nyc_taxi_tsdataset_forecaster.ipynb>
 | 
						|
[chronos_autots_nyc_taxi_colab]: <https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/python/chronos/colab-notebook/chronos_autots_nyc_taxi.ipynb>
 | 
						|
[chronos_autots_nyc_taxi]: <https://github.com/intel-analytics/BigDL/blob/main/python/chronos/colab-notebook/chronos_autots_nyc_taxi.ipynb>
 | 
						|
[chronos_minn_traffic_anomaly_detector_colab]: <https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/python/chronos/colab-notebook/chronos_minn_traffic_anomaly_detector.ipynb>
 | 
						|
[chronos_minn_traffic_anomaly_detector]: <https://github.com/intel-analytics/BigDL/blob/main/python/chronos/colab-notebook/chronos_minn_traffic_anomaly_detector.ipynb>
 | 
						|
[network_traffic_autots_customized_model]: <https://github.com/intel-analytics/BigDL/blob/main/python/chronos/use-case/network_traffic/network_traffic_autots_customized_model.ipynb>
 | 
						|
[network_traffic_autots_forecasting]: <https://github.com/intel-analytics/BigDL/blob/main/python/chronos/use-case/network_traffic/network_traffic_autots_forecasting.ipynb>
 | 
						|
[network_traffic_model_forecasting]: <https://github.com/intel-analytics/BigDL/blob/main/python/chronos/use-case/network_traffic/network_traffic_model_forecasting.ipynb>
 | 
						|
[network_traffic_multivariate_multistep_tcnforecaster]: <https://github.com/intel-analytics/BigDL/blob/main/python/chronos/use-case/network_traffic/network_traffic_multivariate_multistep_tcnforecaster.ipynb>
 | 
						|
[stock_prediction]: <https://github.com/intel-analytics/BigDL/blob/main/python/chronos/use-case/fsi/stock_prediction.ipynb>
 | 
						|
[stock_prediction_prophet]: <https://github.com/intel-analytics/BigDL/blob/main/python/chronos/use-case/fsi/stock_prediction_prophet.ipynb>
 | 
						|
[AIOps_anomaly_detect_unsupervised]: <https://github.com/intel-analytics/BigDL/blob/main/python/chronos/use-case/AIOps/AIOps_anomaly_detect_unsupervised.ipynb>
 | 
						|
[AIOps_anomaly_detect_unsupervised_forecast_based]: <https://github.com/intel-analytics/BigDL/blob/main/python/chronos/use-case/AIOps/AIOps_anomaly_detect_unsupervised_forecast_based.ipynb> |