ipex-llm/python/llm/dev/benchmark/all-in-one/README.md
Yuwen Hu e713296090
Update all-in-one benchmark (#12272)
* Update all-in-one benchmark

* Small fix

* Small fix

* Small fix
2024-10-25 16:52:59 +08:00

91 lines
4.8 KiB
Markdown

# All in One Benchmark Test
All in one benchmark test allows users to test all the benchmarks and record them in a result CSV. Users can provide models and related information in `config.yaml`.
Before running, make sure to have [ipex-llm](../../../../../README.md) installed.
> The prompts for benchmarking are from datasets [abisee/cnn_dailymail](https://huggingface.co/datasets/abisee/cnn_dailymail), [Open-Orca/OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca), [THUDM/LongBench](https://huggingface.co/datasets/THUDM/LongBench), etc.
## Dependencies
```bash
pip install omegaconf
pip install pandas
```
Install gperftools to use libtcmalloc.so for MAX GPU to get better performance:
```bash
conda install -c conda-forge -y gperftools=2.10
```
## Config
Config YAML file has following format
```yaml
repo_id:
# - 'THUDM/chatglm2-6b'
- 'meta-llama/Llama-2-7b-chat-hf'
# - 'liuhaotian/llava-v1.5-7b' # requires a LLAVA_REPO_DIR env variables pointing to the llava dir; added only for gpu win related test_api now
local_model_hub: 'path to your local model hub'
warm_up: 1 # must set >=2 when run "pipeline_parallel_gpu" test_api
num_trials: 3
num_beams: 1 # default to greedy search
low_bit: 'sym_int4' # default to use 'sym_int4' (i.e. symmetric int4)
batch_size: 1 # default to 1
in_out_pairs:
- '32-32'
- '1024-128'
test_api:
- "transformer_int4_fp16_gpu" # on Intel GPU, transformer-like API, (qtype=int4), (dtype=fp16)
# - "transformer_int4_fp16_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), (dtype=fp16)
# - "transformer_int4_gpu" # on Intel GPU, transformer-like API, (qtype=int4), (dtype=fp32)
# - "transformer_int4_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), (dtype=fp32)
# - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), use load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
# - "transformer_int4_fp16_loadlowbit_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), (dtype=fp16), use load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
# - "bigdl_fp16_gpu" # on Intel GPU, use ipex-llm transformers API, (dtype=fp16), (qtype=fp16)
# - "optimize_model_gpu" # on Intel GPU, can optimize any pytorch models include transformer model
# - "deepspeed_optimize_model_gpu" # on Intel GPU, deepspeed autotp inference
# - "pipeline_parallel_gpu" # on Intel GPU, pipeline parallel inference
# - "speculative_gpu" # on Intel GPU, inference with self-speculative decoding
# - "transformer_int4" # on Intel CPU, transformer-like API, (qtype=int4)
# - "native_int4" # on Intel CPU
# - "optimize_model" # on Intel CPU, can optimize any pytorch models include transformer model
# - "pytorch_autocast_bf16" # on Intel CPU
# - "transformer_autocast_bf16" # on Intel CPU
# - "bigdl_ipex_bf16" # on Intel CPU, (qtype=bf16)
# - "bigdl_ipex_int4" # on Intel CPU, (qtype=int4)
# - "bigdl_ipex_int8" # on Intel CPU, (qtype=int8)
# - "speculative_cpu" # on Intel CPU, inference with self-speculative decoding
# - "deepspeed_transformer_int4_cpu" # on Intel CPU, deepspeed autotp inference
# - "transformers_int4_npu_win" # on Intel NPU for Windows, transformer-like API, (qtype=int4)
cpu_embedding: False # whether put embedding to CPU
streaming: False # whether output in streaming way (only available now for gpu win related test_api)
use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only available now for "pipeline_parallel_gpu" test_api)
task: 'continuation' # task can be 'continuation', 'QA' and 'summarize'
```
## (Optional) Save model in low bit
If you choose the `transformer_int4_loadlowbit_gpu_win` or `transformer_int4_fp16_loadlowbit_gpu_win` test API, you will need to save the model in low bit first.
Running `python save.py` will save all models declared in `repo_id` list into low bit models under `local_model_hub` folder.
## Run
run `python run.py`, this will output results to `results.csv`.
For SPR performance, run `bash run-spr.sh`.
> **Note**
>
> The value of `OMP_NUM_THREADS` should be the same as the cpu cores specified by `numactl -C`.
> **Note**
>
> Please install torch nightly version to avoid `Illegal instruction (core dumped)` issue, you can follow the following command to install: `pip install --pre --upgrade torch --index-url https://download.pytorch.org/whl/nightly/cpu`
For ARC performance, run `bash run-arc.sh`.
For MAX GPU performance, run `bash run-max-gpu.sh`.