4.3 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	ChatGLM2
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on ChatGLM2 models on Intel GPUs. For illustration purposes, we utilize the THUDM/chatglm2-6b as a reference ChatGLM2 model.
0. Requirements
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to here for more information.
Example 1: Predict Tokens using generate() API
In the example generate.py, we show a basic use case for a ChatGLM2 model to predict the next N tokens using generate() API, with BigDL-LLM INT4 optimizations on Intel GPUs.
1. Install
We suggest using conda to manage environment:
conda create -n llm python=3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
2. Configures OneAPI environment variables
source /opt/intel/oneapi/setvars.sh
3. Run
For optimal performance on Arc, it is recommended to set several environment variables.
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
Arguments info:
--repo-id-or-model-path REPO_ID_OR_MODEL_PATH: argument defining the huggingface repo id for the ChatGLM2 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be'THUDM/chatglm2-6b'.--prompt PROMPT: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be'AI是什么?'.--n-predict N_PREDICT: argument defining the max number of tokens to predict. It is default to be32.
Sample Output
THUDM/chatglm2-6b
Inference time: xxxx s
-------------------- Prompt --------------------
问:AI是什么?
答:
-------------------- Output --------------------
问:AI是什么?
答: AI指的是人工智能,是一种能够通过学习和推理来执行任务的计算机程序。它可以模仿人类的思维方式,做出类似人类的决策,并且具有自主学习、自我
Inference time: xxxx s
-------------------- Prompt --------------------
问:What is AI?
答:
-------------------- Output --------------------
问:What is AI?
答: Artificial Intelligence (AI) refers to the ability of a computer or machine to perform tasks that typically require human-like intelligence, such as understanding language, recognizing patterns
Example 2: Stream Chat using stream_chat() API
In the example streamchat.py, we show a basic use case for a ChatGLM2 model to stream chat, with BigDL-LLM INT4 optimizations.
1. Install
We suggest using conda to manage environment:
conda create -n llm python=3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
2. Configures OneAPI environment variables
source /opt/intel/oneapi/setvars.sh
3. Run
For optimal performance on Arc, it is recommended to set several environment variables.
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
Stream Chat using stream_chat() API:
python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION
Chat using chat() API:
python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION --disable-stream
Arguments info:
--repo-id-or-model-path REPO_ID_OR_MODEL_PATH: argument defining the huggingface repo id for the ChatGLM2 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be'THUDM/chatglm2-6b'.--question QUESTION: argument defining the question to ask. It is default to be"晚上睡不着应该怎么办".--disable-stream: argument defining whether to stream chat. If include--disable-streamwhen running the script, the stream chat is disabled andchat()API is used.