* Create install.md * Update install_cpu.md * Delete original docs/mddocs/Overview/install_cpu.md * Update install_cpu.md * Update install_gpu.md * update llm.md and install.md * Update docs in KeyFeatures * Review and fix typos * Fix on folded NOTE * Small fix * Small fix * Remove empty known_issue.md * Small fix * Small fix * Further fix * Fixes * Fix --------- Co-authored-by: Yuwen Hu <yuwen.hu@intel.com>
27 lines
1.2 KiB
Markdown
27 lines
1.2 KiB
Markdown
# Native Format
|
|
|
|
You may also convert Hugging Face *Transformers* models into native INT4 format for maximum performance as follows.
|
|
|
|
> [!NOTE]
|
|
> Currently only llama/bloom/gptneox/starcoder/chatglm model families are supported; you may use the corresponding API to load the converted model. (For other models, you can use the Hugging Face ``transformers`` format as described [here](./hugging_face_format.md))
|
|
|
|
|
|
```python
|
|
# convert the model
|
|
from ipex_llm import llm_convert
|
|
ipex_llm_path = llm_convert(model='/path/to/model/',
|
|
outfile='/path/to/output/', outtype='int4', model_family="llama")
|
|
|
|
# load the converted model
|
|
# switch to ChatGLMForCausalLM/GptneoxForCausalLM/BloomForCausalLM/StarcoderForCausalLM to load other models
|
|
from ipex_llm.transformers import LlamaForCausalLM
|
|
llm = LlamaForCausalLM.from_pretrained("/path/to/output/model.bin", native=True, ...)
|
|
|
|
# run the converted model
|
|
input_ids = llm.tokenize(prompt)
|
|
output_ids = llm.generate(input_ids, ...)
|
|
output = llm.batch_decode(output_ids)
|
|
```
|
|
|
|
> [!NOTE]
|
|
> See the complete example [here](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/Native-Models)
|