ipex-llm/docs/readthedocs/source/doc/Orca/Howto/autoxgboost-quickstart.md
Kai Huang 189a2f5179 Update Orca How-to index (#7137)
* update index

* fix style

* fix ray

* fix

* update
2022-12-30 17:11:11 +08:00

82 lines
3.7 KiB
Markdown

# Enable AutoML for XGBoost
---
![](../../../../image/colab_logo_32px.png)[Run in Google Colab](https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/autoxgboost_regressor_sklearn_boston.ipynb)  ![](../../../../image/GitHub-Mark-32px.png)[View source on GitHub](https://github.com/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/autoxgboost_regressor_sklearn_boston.ipynb)
---
**In this guide we will describe how to use Orca AutoXGBoost for automated xgboost tuning**
Orca AutoXGBoost enables distributed automated hyper-parameter tuning for XGBoost, which includes `AutoXGBRegressor` and `AutoXGBClassifier` for sklearn`XGBRegressor` and `XGBClassifier` respectively. See more about [xgboost scikit-learn API](https://xgboost.readthedocs.io/en/latest/python/python_api.html#module-xgboost.sklearn).
### Step 0: Prepare Environment
[Conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/) is needed to prepare the Python environment for running this example. Please refer to the [install guide](https://bigdl.readthedocs.io/en/latest/doc/Orca/Overview/distributed-tuning.html#install) for more details.
### Step 1: Init Orca Context
```python
from bigdl.orca import init_orca_context, stop_orca_context
if cluster_mode == "local":
init_orca_context(cores=6, memory="2g", init_ray_on_spark=True) # run in local mode
elif cluster_mode == "k8s":
init_orca_context(cluster_mode="k8s", num_nodes=2, cores=4, init_ray_on_spark=True) # run on K8s cluster
elif cluster_mode == "yarn":
init_orca_context(
cluster_mode="yarn-client", cores=4, num_nodes=2, memory="2g", init_ray_on_spark=True,
driver_memory="10g", driver_cores=1) # run on Hadoop YARN cluster
```
This is the only place where you need to specify local or distributed mode. View [Orca Context](./../Overview/orca-context.md) for more details.
**Note:** You should `export HADOOP_CONF_DIR=/path/to/hadoop/conf/dir` when running on Hadoop YARN cluster. View [Hadoop User Guide](./../../UserGuide/hadoop.md) for more details.
### Step 2: Define Search space
You should define a dictionary as your hyper-parameter search space.
The keys are hyper-parameter names you want to search for `XGBRegressor`, and you can specify how you want to sample each hyper-parameter in the values of the search space. See [automl.hp](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-hp) for more details.
```python
from bigdl.orca.automl import hp
search_space = {
"n_estimators": hp.grid_search([50, 100, 200]),
"max_depth": hp.choice([2, 4, 6]),
}
```
### Step 3: Automatically fit and search with Orca AutoXGBoost
First create an `AutoXGBRegressor`.
```python
from bigdl.orca.automl.xgboost import AutoXGBRegressor
auto_xgb_reg = AutoXGBRegressor(cpus_per_trial=2,
name="auto_xgb_classifier",
min_child_weight=3,
random_state=2)
```
Next, use the `AutoXGBRegressor` to fit and search for the best hyper-parameter set.
```python
auto_xgb_reg.fit(data=(X_train, y_train),
validation_data=(X_test, y_test),
search_space=search_space,
n_sampling=2,
metric="rmse")
```
### Step 4: Get best model and hyper parameters
You can get the best learned model and the best hyper-parameter set for further deployment. The best model is an sklearn `XGBRegressor` instance.
```python
best_model = auto_xgb_reg.get_best_model()
best_config = auto_xgb_reg.get_best_config()
```
**Note:** You should call `stop_orca_context()` when your application finishes.