ipex-llm/python/llm/example/CPU/LlamaIndex/README.md
Zhicun 9026c08633 Fix llamaindex AutoTokenizer bug (#10345)
* fix tokenizer

* fix AutoTokenizer bug

* modify code style
2024-03-08 16:24:50 +08:00

75 lines
3.4 KiB
Markdown

# LlamaIndex Examples
This folder contains examples showcasing how to use [**LlamaIndex**](https://github.com/run-llama/llama_index) with `bigdl-llm`.
> [**LlamaIndex**](https://github.com/run-llama/llama_index) is a data framework designed to improve large language models by providing tools for easier data ingestion, management, and application integration.
## Prerequisites
Ensure `bigdl-llm` is installed by following the [BigDL-LLM Installation Guide](https://github.com/intel-analytics/BigDL/tree/main/python/llm#install) before proceeding with the examples provided here.
## Retrieval-Augmented Generation (RAG) Example
The RAG example ([rag.py](./rag.py)) is adapted from the [Official llama index RAG example](https://docs.llamaindex.ai/en/stable/examples/low_level/oss_ingestion_retrieval.html). This example builds a pipeline to ingest data (e.g. llama2 paper in pdf format) into a vector database (e.g. PostgreSQL), and then build a retrieval pipeline from that vector database.
### Setting up Dependencies
* **Install LlamaIndex Packages**
```bash
pip install llama-index-readers-file llama-index-vector-stores-postgres llama-index-embeddings-huggingface
```
* **Database Setup (using PostgreSQL)**:
* Installation:
```bash
sudo apt-get install postgresql-client
sudo apt-get install postgresql
```
* Initialization:
Switch to the **postgres** user and launch **psql** console:
```bash
sudo su - postgres
psql
```
Then, create a new user role:
```bash
CREATE ROLE <user> WITH LOGIN PASSWORD '<password>';
ALTER ROLE <user> SUPERUSER;
```
* **Pgvector Installation**:
Follow installation instructions on [pgvector's GitHub](https://github.com/pgvector/pgvector) and refer to the [installation notes](https://github.com/pgvector/pgvector#installation-notes) for additional help.
* **Data Preparation**: Download the Llama2 paper and save it as `data/llama2.pdf`, which serves as the default source file for retrieval.
```bash
mkdir data
wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"
```
### Running the RAG example
In the current directory, run the example with command:
```bash
python rag.py -m <path_to_model>
```
**Additional Parameters for Configuration**:
- `-m MODEL_PATH`: **Required**, path to the LLM model
- `-e EMBEDDING_MODEL_PATH`: path to the embedding model
- `-u USERNAME`: username in the PostgreSQL database
- `-p PASSWORD`: password in the PostgreSQL database
- `-q QUESTION`: question you want to ask
- `-d DATA`: path to source data used for retrieval (in pdf format)
- `-n N_PREDICT`: max predict tokens
### Example Output
A query such as **"How does Llama 2 compare to other open-source models?"** with the Llama2 paper as the data source, using the `Llama-2-7b-chat-hf` model, will produce the output like below:
```
Llama 2 performs better than most open-source models on the benchmarks we tested. Specifically, it outperforms all open-source models on MMLU and BBH, and is close to GPT-3.5 on these benchmarks. Additionally, Llama 2 is on par or better than PaLM-2-L on almost all benchmarks. The only exception is the coding benchmarks, where Llama 2 lags significantly behind GPT-4 and PaLM-2-L. Overall, Llama 2 demonstrates strong performance on a wide range of natural language processing tasks.
```