120 lines
4.5 KiB
Markdown
120 lines
4.5 KiB
Markdown
# Scale TensorFlow 1.15 Applications
|
|
|
|
---
|
|
|
|
[Run in Google Colab](https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/tf_lenet_mnist.ipynb) [View source on GitHub](https://github.com/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/tf_lenet_mnist.ipynb)
|
|
|
|
---
|
|
|
|
**In this guide we will describe how to scale out _TensorFlow 1.15_ programs using Orca in 4 simple steps.**
|
|
|
|
### Step 0: Prepare Environment
|
|
|
|
We recommend using [conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/) to prepare the environment. Please refer to the [install guide](../Overview/install.md) for more details.
|
|
|
|
```bash
|
|
conda create -n py37 python=3.7 # "py37" is conda environment name, you can use any name you like.
|
|
conda activate py37
|
|
|
|
pip install bigdl-orca
|
|
pip install tensorflow==1.15
|
|
pip install tensorflow-datasets==2.0
|
|
pip install psutil
|
|
```
|
|
|
|
### Step 1: Init Orca Context
|
|
```python
|
|
from bigdl.orca import init_orca_context, stop_orca_context
|
|
|
|
if cluster_mode == "local": # For local machine
|
|
init_orca_context(cluster_mode="local", cores=4, memory="4g")
|
|
elif cluster_mode == "k8s": # For K8s cluster
|
|
init_orca_context(cluster_mode="k8s", num_nodes=2, cores=2, memory="4g", master=..., container_image=...)
|
|
elif cluster_mode == "yarn": # For Hadoop/YARN cluster
|
|
init_orca_context(cluster_mode="yarn", num_nodes=2, cores=2, memory="4g")
|
|
```
|
|
|
|
This is the only place where you need to specify local or distributed mode. View [Orca Context](../Overview/orca-context.md) for more details.
|
|
|
|
Please check the tutorials if you want to run on [Kubernetes](../Tutorial/k8s.md) or [Hadoop/YARN](../Tutorial/yarn.md) clusters.
|
|
|
|
### Step 2: Define the Model
|
|
|
|
You may define your model, loss and metrics in the same way as in any standard (single node) TensorFlow program.
|
|
|
|
```python
|
|
import tensorflow as tf
|
|
|
|
def accuracy(logits, labels):
|
|
predictions = tf.argmax(logits, axis=1, output_type=labels.dtype)
|
|
is_correct = tf.cast(tf.equal(predictions, labels), dtype=tf.float32)
|
|
return tf.reduce_mean(is_correct)
|
|
|
|
def lenet(images):
|
|
with tf.variable_scope('LeNet', [images]):
|
|
net = tf.layers.conv2d(images, 32, (5, 5), activation=tf.nn.relu, name='conv1')
|
|
net = tf.layers.max_pooling2d(net, (2, 2), 2, name='pool1')
|
|
net = tf.layers.conv2d(net, 64, (5, 5), activation=tf.nn.relu, name='conv2')
|
|
net = tf.layers.max_pooling2d(net, (2, 2), 2, name='pool2')
|
|
net = tf.layers.flatten(net)
|
|
net = tf.layers.dense(net, 1024, activation=tf.nn.relu, name='fc3')
|
|
logits = tf.layers.dense(net, 10)
|
|
return logits
|
|
|
|
# tensorflow inputs
|
|
images = tf.placeholder(dtype=tf.float32, shape=(None, 28, 28, 1))
|
|
# tensorflow labels
|
|
labels = tf.placeholder(dtype=tf.int32, shape=(None,))
|
|
|
|
logits = lenet(images)
|
|
loss = tf.reduce_mean(tf.losses.sparse_softmax_cross_entropy(logits=logits, labels=labels))
|
|
acc = accuracy(logits, labels)
|
|
```
|
|
### Step 3: Define Train Dataset
|
|
|
|
You can define the dataset using standard [tf.data.Dataset](https://www.tensorflow.org/api_docs/python/tf/data/Dataset). Orca also supports [Spark DataFrame](./spark-dataframe.md) and [Orca XShards](./xshards-pandas.md).
|
|
|
|
```python
|
|
import tensorflow_datasets as tfds
|
|
|
|
def preprocess(data):
|
|
data['image'] = tf.cast(data["image"], tf.float32) / 255.
|
|
return data['image'], data['label']
|
|
|
|
# get DataSet
|
|
mnist_train = tfds.load(name="mnist", split="train", data_dir=...)
|
|
mnist_test = tfds.load(name="mnist", split="test", data_dir=...)
|
|
|
|
mnist_train = mnist_train.map(preprocess)
|
|
mnist_test = mnist_test.map(preprocess)
|
|
```
|
|
|
|
### Step 4: Fit with Orca Estimator
|
|
|
|
First, create an Orca Estimator for TensorFlow.
|
|
|
|
```python
|
|
from bigdl.orca.learn.tf.estimator import Estimator
|
|
|
|
est = Estimator.from_graph(inputs=images,
|
|
outputs=logits,
|
|
labels=labels,
|
|
loss=loss,
|
|
optimizer=tf.train.AdamOptimizer(),
|
|
metrics={"acc": acc})
|
|
```
|
|
|
|
Next, fit and evaluate using the Estimator.
|
|
```python
|
|
est.fit(data=mnist_train,
|
|
batch_size=320,
|
|
epochs=5,
|
|
validation_data=mnist_test)
|
|
|
|
result = est.evaluate(mnist_test)
|
|
print(result)
|
|
```
|
|
|
|
**Note:** You should call `stop_orca_context()` when your program finishes.
|
|
|
|
That's it, the same code can run seamlessly on your local laptop and scale to [Kubernetes](../Tutorial/k8s.md) or [Hadoop/YARN](../Tutorial/yarn.md) clusters.
|