* LLM: add whisper models into nightly test * small fix * small fix * add more whisper models * test all cases * test specific cases * collect the csv * store the resut * to html * small fix * small test * test all cases * modify whisper_csv_to_html
113 lines
No EOL
4.2 KiB
Python
113 lines
No EOL
4.2 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
# Python program to convert CSV to HTML Table
|
|
|
|
import os
|
|
import sys
|
|
import argparse
|
|
import pandas as pd
|
|
|
|
def highlight_vals(val, max=3.0, color1='red', color2='green'):
|
|
if isinstance(val, float):
|
|
if val > max:
|
|
return 'background-color: %s' % color2
|
|
elif val <= -max:
|
|
return 'background-color: %s' % color1
|
|
else:
|
|
return ''
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="convert .csv file to .html file")
|
|
parser.add_argument("-f", "--folder_path", type=str, dest="folder_path",
|
|
help="The directory which stores the .csv file", default="/mnt/disk1/whisper_pr_gpu/")
|
|
parser.add_argument("-t", "--threshold", type=float, dest="threshold",
|
|
help="the threshold of highlight values", default=1.0)
|
|
args = parser.parse_args()
|
|
|
|
csv_files = []
|
|
for file_name in os.listdir(args.folder_path):
|
|
file_path = os.path.join(args.folder_path, file_name)
|
|
if os.path.isfile(file_path) and file_name.endswith(".csv"):
|
|
csv_files.append(file_path)
|
|
csv_files.sort(reverse=True)
|
|
|
|
latest_csv = pd.read_csv(csv_files[0], index_col=0)
|
|
daily_html=csv_files[0].split(".")[0]+".html"
|
|
|
|
if len(csv_files)>1:
|
|
|
|
previous_csv = pd.read_csv(csv_files[1], index_col=0)
|
|
|
|
last1=['']*len(latest_csv.index)
|
|
diff1=['']*len(latest_csv.index)
|
|
last2=['']*len(latest_csv.index)
|
|
diff2=['']*len(latest_csv.index)
|
|
|
|
WER='WER'
|
|
RTF='RTF'
|
|
|
|
for latest_csv_ind,latest_csv_row in latest_csv.iterrows():
|
|
|
|
latest_csv_model=latest_csv_row['models'].strip()
|
|
latest_csv_precision=latest_csv_row['precision'].strip()
|
|
latest_WER=latest_csv_row[WER]
|
|
latest_RTF=latest_csv_row[RTF]
|
|
|
|
in_previous_flag=False
|
|
|
|
for previous_csv_ind,previous_csv_row in previous_csv.iterrows():
|
|
|
|
previous_csv_model=previous_csv_row['models'].strip()
|
|
previous_csv_precision=previous_csv_row['precision'].strip()
|
|
|
|
if latest_csv_model==previous_csv_model and latest_csv_precision==previous_csv_precision:
|
|
|
|
previous_WER=previous_csv_row[WER]
|
|
previous_RTF=previous_csv_row[RTF]
|
|
if previous_WER > 0.0 and previous_RTF > 0.0:
|
|
last1[latest_csv_ind]=previous_WER
|
|
diff1[latest_csv_ind]=round((previous_WER-latest_WER)*100/previous_WER,2)
|
|
last2[latest_csv_ind]=previous_RTF
|
|
diff2[latest_csv_ind]=round((previous_RTF-latest_RTF)*100/previous_RTF,2)
|
|
in_previous_flag=True
|
|
|
|
if not in_previous_flag:
|
|
last1[latest_csv_ind]=pd.NA
|
|
diff1[latest_csv_ind]=pd.NA
|
|
last2[latest_csv_ind]=pd.NA
|
|
diff2[latest_csv_ind]=pd.NA
|
|
|
|
latest_csv.insert(loc=4,column='last1',value=last1)
|
|
latest_csv.insert(loc=5,column='diff1(%)',value=diff1)
|
|
latest_csv.insert(loc=6,column='last2',value=last2)
|
|
latest_csv.insert(loc=7,column='diff2(%)',value=diff2)
|
|
|
|
subset1=['diff1(%)','diff2(%)']
|
|
columns={'WER': '{:.6f}', 'RTF': '{:.6f}', 'last1': '{:.6f}', 'diff1(%)': '{:.6f}','last2': '{:.6f}', 'diff2(%)': '{:.6f}'}
|
|
|
|
styled_df = latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=1.0, color1='red', color2='green'), subset=subset1)
|
|
html_output = styled_df.set_table_attributes("border=1").render()
|
|
|
|
with open(daily_html, 'w') as f:
|
|
f.write(html_output)
|
|
else:
|
|
latest_csv.to_html(daily_html)
|
|
|
|
return 0
|
|
|
|
if __name__ == "__main__":
|
|
sys.exit(main()) |