88 lines
		
	
	
	
		
			3.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			88 lines
		
	
	
	
		
			3.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
# Benchmark tool for transformers int4 (separate 1st token and rest)
 | 
						|
 | 
						|
[benchmark_util.py](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/src/ipex_llm/utils/benchmark_util.py) is used to provide a simple benchmark tool for transformer int4 model to calculate 1st token performance and the rest on CPU and GPU.
 | 
						|
 | 
						|
## CPU Usage
 | 
						|
Just put this file into your benchmark directory, and then wrap your transformer int4 model with `BenchmarkWrapper` (`model = BenchmarkWrapper(model)`).
 | 
						|
Take `chatglm-6b` as an example:
 | 
						|
```python
 | 
						|
import torch
 | 
						|
from ipex_llm.transformers import AutoModel
 | 
						|
from transformers import AutoTokenizer
 | 
						|
from ipex_llm.utils.benchmark_util import BenchmarkWrapper
 | 
						|
 | 
						|
model_path ='THUDM/chatglm-6b'
 | 
						|
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True)
 | 
						|
model = BenchmarkWrapper(model, do_print=True)
 | 
						|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
prompt = "今天睡不着怎么办"
 | 
						|
 
 | 
						|
with torch.inference_mode():
 | 
						|
    input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
						|
    output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
 | 
						|
    output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
						|
```
 | 
						|
Output will be like:
 | 
						|
```bash
 | 
						|
=========First token cost xx.xxxxs=========
 | 
						|
=========Last token cost average xx.xxxxs (31 tokens in all)=========
 | 
						|
```
 | 
						|
 | 
						|
## GPU Usage
 | 
						|
### Inference on single GPU
 | 
						|
Just put this file into your benchmark directory, and then wrap your transformer int4 model with `BenchmarkWrapper` (`model = BenchmarkWrapper(model)`).
 | 
						|
Take `chatglm-6b` as an example:
 | 
						|
```python
 | 
						|
import torch
 | 
						|
import intel_extension_for_pytorch as ipex
 | 
						|
from ipex_llm.transformers import AutoModel
 | 
						|
from transformers import AutoTokenizer
 | 
						|
from ipex_llm.utils.benchmark_util import BenchmarkWrapper
 | 
						|
 | 
						|
model_path ='THUDM/chatglm-6b'
 | 
						|
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True)
 | 
						|
model = model.to('xpu')
 | 
						|
model = BenchmarkWrapper(model, do_print=True)
 | 
						|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
prompt = "今天睡不着怎么办"
 | 
						|
 
 | 
						|
with torch.inference_mode():
 | 
						|
    # wamup two times as use ipex
 | 
						|
    for i in range(2):
 | 
						|
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
						|
        output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
 | 
						|
        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
						|
    # collect performance data now
 | 
						|
    for i in range(5):
 | 
						|
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
						|
        output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
 | 
						|
        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
						|
```
 | 
						|
 | 
						|
### Inference on multi GPUs
 | 
						|
Similarly, put this file into your benchmark directory, and then wrap your optimized model with `BenchmarkWrapper` (`model = BenchmarkWrapper(model)`).
 | 
						|
For example, just need to apply following code patch on [Deepspeed Autotp example code](https://github.com/intel-analytics/ipex-llm/blob/main/python/llm/example/GPU/Deepspeed-AutoTP/deepspeed_autotp.py) to calculate 1st and the rest token performance:
 | 
						|
```python
 | 
						|
 import torch
 | 
						|
 import transformers
 | 
						|
 import deepspeed
 | 
						|
+from ipex_llm.utils.benchmark_util import BenchmarkWrapper
 | 
						|
 
 | 
						|
 def get_int_from_env(env_keys, default):
 | 
						|
     """Returns the first positive env value found in the `env_keys` list or the default."""
 | 
						|
@@ -98,6 +99,7 @@ if __name__ == '__main__':
 | 
						|
     init_distributed()
 | 
						|
 
 | 
						|
     print(model)
 | 
						|
+    model = BenchmarkWrapper(model, do_print=True)
 | 
						|
 
 | 
						|
     # Load tokenizer
 | 
						|
     tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
```
 | 
						|
 | 
						|
### Sample Output
 | 
						|
Output will be like:
 | 
						|
```bash
 | 
						|
=========First token cost xx.xxxxs=========
 | 
						|
=========Last token cost average xx.xxxxs (31 tokens in all)=========
 | 
						|
```
 |