ipex-llm/docs/readthedocs/source/doc/PythonAPI/DLlib/regularizers.md
Shengsheng Huang f2e4c40cee change the readthedocs theme and reorg the sections (#6056)
* refactor toc

* refactor toc

* Change to pydata-sphinx-theme and update packages requirement list for ReadtheDocs

* Remove customized css for old theme

* Add index page to each top bar section and limit dropdown maximum to be 4

* Use js to change 'More' to 'Libraries'

* Add custom.css to conf.py for further css changes

* Add BigDL logo and search bar

* refactor toc

* refactor toc and add overview

* refactor toc and add overview

* refactor toc and add overview

* refactor get started

* add paper and video section

* add videos

* add grid columns in landing page

* add document roadmap to index

* reapply search bar and github icon commit

* reorg orca and chronos sections

* Test: weaken ads by js

* update: change left attrbute

* update: add comments

* update: change opacity to 0.7

* Remove useless theme template override for old theme

* Add sidebar releases component in the home page

* Remove sidebar search and restore top nav search button

* Add BigDL handouts

* Add back to homepage button to pages except from the home page

* Update releases contents & styles in left sidebar

* Add version badge to the top bar

* Test: weaken ads by js

* update: add comments

* remove landing page contents

* rfix chronos install

* refactor install

* refactor chronos section titles

* refactor nano index

* change chronos landing

* revise chronos landing page

* add document navigator to nano landing page

* revise install landing page

* Improve css of versions in sidebar

* Make handouts image pointing to a page in new tab

* add win guide to install

* add dliib installation

* revise title bar

* rename index files

* add index page for user guide

* add dllib and orca API

* update user guide landing page

* refactor side bar

* Remove extra style configuration of card components & make different card usage consistent

* Remove extra styles for Nano how-to guides

* Remove extra styles for Chronos how-to guides

* Remove dark mode for now

* Update index page description

* Add decision tree for choosing BigDL libraries in index page

* add dllib models api, revise core layers formats

* Change primary & info color in light mode

* Restyle card components

* Restructure Chronos landing page

* Update card style

* Update BigDL library selection decision tree

* Fix failed Chronos tutorials filter

* refactor PPML documents

* refactor and add friesian documents

* add friesian arch diagram

* update landing pages and fill key features guide index page

* Restyle link card component

* Style video frames in PPML sections

* Adjust Nano landing page

* put api docs to the last in index for convinience

* Make badge horizontal padding smaller & small changes

* Change the second letter of all header titles to be small capitalizd

* Small changes on Chronos index page

* Revise decision tree to make it smaller

* Update: try to change the position of ads.

* Bugfix: deleted nonexist file config

* Update: update ad JS/CSS/config

* Update: change ad.

* Update: delete my template and change files.

* Update: change chronos installation table color.

* Update: change table font color to --pst-color-primary-text

* Remove old contents in landing page sidebar

* Restyle badge for usage in card footer again

* Add quicklinks template on landing page sidebar

* add quick links

* Add scala logo

* move tf, pytorch out of the link

* change orca key features cards

* fix typo

* fix a mistake in wording

* Restyle badge for card footer

* Update decision tree

* Remove useless html templates

* add more api docs and update tutorials in dllib

* update chronos install using new style

* merge changes in nano doc from master

* fix quickstart links in sidebar quicklinks

* Make tables responsive

* Fix overflow in api doc

* Fix list indents problems in [User guide] section

* Further fixes to nested bullets contents in [User Guide] section

* Fix strange title in Nano 5-min doc

* Fix list indent problems in [DLlib] section

* Fix misnumbered list problems and other small fixes for [Chronos] section

* Fix list indent problems and other small fixes for [Friesian] section

* Fix list indent problem and other small fixes for [PPML] section

* Fix list indent problem for developer guide

* Fix list indent problem for [Cluster Serving] section

* fix dllib links

* Fix wrong relative link in section landing page

Co-authored-by: Yuwen Hu <yuwen.hu@intel.com>
Co-authored-by: Juntao Luo <1072087358@qq.com>
2022-10-18 15:35:31 +08:00

11 KiB

Regularizer


L1 Regularizer

Scala:

val l1Regularizer = L1Regularizer(rate)

Python:

regularizerl1 = L1Regularizer(rate)

L1 regularizer is used to add penalty to the gradWeight to avoid overfitting.

In our code implementation, gradWeight = gradWeight + alpha * abs(weight)

For more details, please refer to wiki.

Scala example:


import com.intel.analytics.bigdl.dllib.utils.RandomGenerator.RNG
import com.intel.analytics.bigdl.dllib.tensor._
import com.intel.analytics.bigdl.dllib.optim._
import com.intel.analytics.bigdl.numeric.NumericFloat
import com.intel.analytics.bigdl.dllib.nn._

RNG.setSeed(100)

val input = Tensor(3, 5).rand
val gradOutput = Tensor(3, 5).rand
val linear = Linear(5, 5, wRegularizer = L1Regularizer(0.2), bRegularizer = L1Regularizer(0.2))

val output = linear.forward(input)
val gradInput = linear.backward(input, gradOutput)

scala> input
input: com.intel.analytics.bigdl.tensor.Tensor[Float] =
0.54340494      0.67115563      0.2783694       0.4120464       0.4245176
0.52638245      0.84477615      0.14860484      0.004718862     0.15671109
0.12156912      0.18646719      0.67074907      0.21010774      0.82585275
[com.intel.analytics.bigdl.tensor.DenseTensor$mcF$sp of size 3x5]

scala> gradOutput
gradOutput: com.intel.analytics.bigdl.tensor.Tensor[Float] =
0.4527399       0.13670659      0.87014264      0.5750933       0.063681036
0.89132196      0.62431186      0.20920213      0.52334774      0.18532822
0.5622963       0.10837689      0.0058171963    0.21969749      0.3074232
[com.intel.analytics.bigdl.tensor.DenseTensor$mcF$sp of size 3x5]

scala> linear.gradWeight
res2: com.intel.analytics.bigdl.tensor.Tensor[Float] =
0.9835552       1.3616763       0.83564335      0.108898684     0.59625006
0.21608911      0.8393639       0.0035243928    -0.11795368     0.4453743
0.38366735      0.9618148       0.47721142      0.5607486       0.6069793
0.81469804      0.6690552       0.18522228      0.08559488      0.7075894
-0.030468717    0.056625083     0.051471338     0.2917061       0.109963015
[com.intel.analytics.bigdl.tensor.DenseTensor of size 5x5]

Python example:


from bigdl.dllib.nn.layer import *
from bigdl.dllib.nn.criterion import *
from bigdl.dllib.optim.optimizer import *
from bigdl.dllib.util.common import *

input = np.random.uniform(0, 1, (3, 5)).astype("float32")
gradOutput = np.random.uniform(0, 1, (3, 5)).astype("float32")
linear = Linear(5, 5, wRegularizer = L1Regularizer(0.2), bRegularizer = L1Regularizer(0.2))
output = linear.forward(input)
gradInput = linear.backward(input, gradOutput)

> linear.parameters()
{u'Linear@596d857b': {u'bias': array([ 0.3185505 , -0.02004393,  0.34620118, -0.09206461,  0.40776938], dtype=float32),
  u'gradBias': array([ 2.14087653,  1.82181644,  1.90674937,  1.37307787,  0.81534696], dtype=float32),
  u'gradWeight': array([[ 0.34909648,  0.85083449,  1.44904375,  0.90150446,  0.57136625],
         [ 0.3745544 ,  0.42218602,  1.53656614,  1.1836741 ,  1.00702667],
         [ 0.30529332,  0.26813674,  0.85559171,  0.61224306,  0.34721529],
         [ 0.22859855,  0.8535381 ,  1.19809723,  1.37248564,  0.50041491],
         [ 0.36197871,  0.03069445,  0.64837945,  0.12765063,  0.12872688]], dtype=float32),
  u'weight': array([[-0.12423037,  0.35694697,  0.39038274, -0.34970999, -0.08283543],
         [-0.4186025 , -0.33235055,  0.34948507,  0.39953214,  0.16294235],
         [-0.25171402, -0.28955361, -0.32243955, -0.19771226, -0.29320192],
         [-0.39263198,  0.37766701,  0.14673658,  0.24882999, -0.0779015 ],
         [ 0.0323218 , -0.31266898,  0.31543773, -0.0898933 , -0.33485892]], dtype=float32)}}

L2 Regularizer

Scala:

val l2Regularizer = L2Regularizer(rate)

Python:

regularizerl2 = L2Regularizer(rate)

L2 regularizer is used to add penalty to the gradWeight to avoid overfitting.

In our code implementation, gradWeight = gradWeight + alpha * weight * weight

For more details, please refer to wiki.

Scala example:


import com.intel.analytics.bigdl.dllib.utils.RandomGenerator.RNG
import com.intel.analytics.bigdl.dllib.tensor._
import com.intel.analytics.bigdl.dllib.optim._
import com.intel.analytics.bigdl.numeric.NumericFloat
import com.intel.analytics.bigdl.dllib.nn._

RNG.setSeed(100)

val input = Tensor(3, 5).rand
val gradOutput = Tensor(3, 5).rand
val linear = Linear(5, 5, wRegularizer = L2Regularizer(0.2), bRegularizer = L2Regularizer(0.2))

val output = linear.forward(input)
val gradInput = linear.backward(input, gradOutput)

scala> input
input: com.intel.analytics.bigdl.tensor.Tensor[Float] =
0.54340494      0.67115563      0.2783694       0.4120464       0.4245176
0.52638245      0.84477615      0.14860484      0.004718862     0.15671109
0.12156912      0.18646719      0.67074907      0.21010774      0.82585275
[com.intel.analytics.bigdl.tensor.DenseTensor$mcF$sp of size 3x5]

scala> gradOutput
gradOutput: com.intel.analytics.bigdl.tensor.Tensor[Float] =
0.4527399       0.13670659      0.87014264      0.5750933       0.063681036
0.89132196      0.62431186      0.20920213      0.52334774      0.18532822
0.5622963       0.10837689      0.0058171963    0.21969749      0.3074232
[com.intel.analytics.bigdl.tensor.DenseTensor$mcF$sp of size 3x5]

scala> linear.gradWeight
res0: com.intel.analytics.bigdl.tensor.Tensor[Float] =
1.0329735       0.047239657     0.8979603       0.53614384      1.2781229
0.5621818       0.29772854      0.69706535      0.30559152      0.8352279
1.3044653       0.43065858      0.9896795       0.7435816       1.6003494
0.94218314      0.6793372       0.97101355      0.62892824      1.3458569
0.73134506      0.5975239       0.9109101       0.59374434      1.1656629
[com.intel.analytics.bigdl.tensor.DenseTensor of size 5x5]

Python example:

from bigdl.dllib.nn.layer import *
from bigdl.dllib.nn.criterion import *
from bigdl.dllib.optim.optimizer import *
from bigdl.dllib.util.common import *

input = np.random.uniform(0, 1, (3, 5)).astype("float32")
gradOutput = np.random.uniform(0, 1, (3, 5)).astype("float32")
linear = Linear(5, 5, wRegularizer = L2Regularizer(0.2), bRegularizer = L2Regularizer(0.2))
output = linear.forward(input)
gradInput = linear.backward(input, gradOutput)

> linear.parameters()
{u'Linear@787aab5e': {u'bias': array([-0.43960261, -0.12444571,  0.22857292, -0.43216187,  0.27770036], dtype=float32),
  u'gradBias': array([ 0.51726723,  1.32883406,  0.57567948,  1.7791357 ,  1.2887038 ], dtype=float32),
  u'gradWeight': array([[ 0.45477036,  0.22262168,  0.21923628,  0.26152173,  0.19836383],
         [ 1.12261093,  0.72921795,  0.08405925,  0.78192139,  0.48798928],
         [ 0.34581488,  0.21195598,  0.26357424,  0.18987852,  0.2465664 ],
         [ 1.18659711,  1.11271608,  0.72589797,  1.19098675,  0.33769298],
         [ 0.82314551,  0.71177536,  0.4428404 ,  0.764337  ,  0.3500182 ]], dtype=float32),
  u'weight': array([[ 0.03727285, -0.39697152,  0.42733836, -0.34291714, -0.13833708],
         [ 0.09232076, -0.09720675, -0.33625153,  0.06477787, -0.34739712],
         [ 0.17145753,  0.10128133,  0.16679128, -0.33541158,  0.40437087],
         [-0.03005157, -0.36412898,  0.0629965 ,  0.13443278, -0.38414535],
         [-0.16630849,  0.06934392,  0.40328237,  0.22299488, -0.1178569 ]], dtype=float32)}}

L1L2 Regularizer

Scala:

val l1l2Regularizer = L1L2Regularizer(l1rate, l2rate)

Python:

regularizerl1l2 = L1L2Regularizer(l1rate, l2rate)

L1L2 regularizer is used to add penalty to the gradWeight to avoid overfitting.

In our code implementation, we will apply L1regularizer and L2regularizer sequentially.

For more details, please refer to wiki.

Scala example:


import com.intel.analytics.bigdl.dllib.utils.RandomGenerator.RNG
import com.intel.analytics.bigdl.dllib.tensor._
import com.intel.analytics.bigdl.dllib.optim._
import com.intel.analytics.bigdl.numeric.NumericFloat
import com.intel.analytics.bigdl.dllib.nn._

RNG.setSeed(100)

val input = Tensor(3, 5).rand
val gradOutput = Tensor(3, 5).rand
val linear = Linear(5, 5, wRegularizer = L1L2Regularizer(0.2, 0.2), bRegularizer = L1L2Regularizer(0.2, 0.2))

val output = linear.forward(input)
val gradInput = linear.backward(input, gradOutput)

scala> input
input: com.intel.analytics.bigdl.tensor.Tensor[Float] =
0.54340494      0.67115563      0.2783694       0.4120464       0.4245176
0.52638245      0.84477615      0.14860484      0.004718862     0.15671109
0.12156912      0.18646719      0.67074907      0.21010774      0.82585275
[com.intel.analytics.bigdl.tensor.DenseTensor$mcF$sp of size 3x5]

scala> gradOutput
gradOutput: com.intel.analytics.bigdl.tensor.Tensor[Float] =
0.4527399       0.13670659      0.87014264      0.5750933       0.063681036
0.89132196      0.62431186      0.20920213      0.52334774      0.18532822
0.5622963       0.10837689      0.0058171963    0.21969749      0.3074232
[com.intel.analytics.bigdl.tensor.DenseTensor$mcF$sp of size 3x5]

scala> linear.gradWeight
res1: com.intel.analytics.bigdl.tensor.Tensor[Float] =
1.069174        1.4422078       0.8913989       0.042112567     0.53756505
0.14077617      0.8959319       -0.030221784    -0.1583686      0.4690558
0.37145022      0.99747723      0.5559263       0.58614403      0.66380215
0.88983417      0.639738        0.14924419      0.027530536     0.71988696
-0.053217214    -8.643427E-4    -0.036953792    0.29753304      0.06567569
[com.intel.analytics.bigdl.tensor.DenseTensor of size 5x5]

Python example:

from bigdl.dllib.nn.layer import *
from bigdl.dllib.nn.criterion import *
from bigdl.dllib.optim.optimizer import *
from bigdl.dllib.util.common import *

input = np.random.uniform(0, 1, (3, 5)).astype("float32")
gradOutput = np.random.uniform(0, 1, (3, 5)).astype("float32")
linear = Linear(5, 5, wRegularizer = L1L2Regularizer(0.2, 0.2), bRegularizer = L1L2Regularizer(0.2, 0.2))
output = linear.forward(input)
gradInput = linear.backward(input, gradOutput)

> linear.parameters()
{u'Linear@1356aa91': {u'bias': array([-0.05799473, -0.0548001 ,  0.00408955, -0.22004321, -0.07143869], dtype=float32),
  u'gradBias': array([ 0.89119786,  1.09953558,  1.03394508,  1.19511735,  2.02241182], dtype=float32),
  u'gradWeight': array([[ 0.89061081,  0.58810186, -0.10087357,  0.19108151,  0.60029608],
         [ 0.95275503,  0.2333075 ,  0.46897018,  0.74429053,  1.16038764],
         [ 0.22894514,  0.60031962,  0.3836292 ,  0.15895618,  0.83136207],
         [ 0.49079862,  0.80913013,  0.55491877,  0.69608945,  0.80458677],
         [ 0.98890561,  0.49226439,  0.14861123,  1.37666655,  1.47615671]], dtype=float32),
  u'weight': array([[ 0.44654208,  0.16320795, -0.36029238, -0.25365737, -0.41974261],
         [ 0.18809238, -0.28065765,  0.27677274, -0.29904234,  0.41338971],
         [-0.03731538,  0.22493915,  0.10021331, -0.19495697,  0.25470355],
         [-0.30836752,  0.12083009,  0.3773002 ,  0.24059358, -0.40325543],
         [-0.13601269, -0.39310011, -0.05292636,  0.20001481, -0.08444868]], dtype=float32)}}