ipex-llm/python/llm/example/GPU/ModelScope-Models/README.md
Chu,Youcheng acd77d9e87
Remove env variable BIGDL_LLM_XMX_DISABLED in documentation (#12445)
* fix: remove BIGDL_LLM_XMX_DISABLED in mddocs

* fix: remove set SYCL_CACHE_PERSISTENT=1 in example

* fix: remove BIGDL_LLM_XMX_DISABLED in workflows

* fix: merge igpu and A-series Graphics

* fix: remove set BIGDL_LLM_XMX_DISABLED=1 in example

* fix: remove BIGDL_LLM_XMX_DISABLED in workflows

* fix: merge igpu and A-series Graphics

* fix: textual adjustment

* fix: textual adjustment

* fix: textual adjustment
2024-11-27 11:16:36 +08:00

132 lines
4.6 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Run ModelScope Model
In this directory, you will find example on how you could apply IPEX-LLM INT4 optimizations on ModelScope models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [ZhipuAI/chatglm3-6b](https://modelscope.cn/models/ZhipuAI/chatglm3-6b/summary) as a reference ModelScope model.
## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM3 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
# Refer to https://github.com/modelscope/modelscope/issues/765, please make sure you are using 1.11.0 version
pip install modelscope==1.11.0
```
#### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11 libuv
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pip install modelscope
```
### 2. Configures OneAPI environment variables for Linux
> [!NOTE]
> Skip this step if you are running on Windows.
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
```bash
source /opt/intel/oneapi/setvars.sh
```
### 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
<details>
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
```
</details>
<details>
<summary>For Intel Data Center GPU Max Series</summary>
```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
```
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
</details>
<details>
<summary>For Intel iGPU</summary>
```bash
export SYCL_CACHE_PERSISTENT=1
```
</details>
#### 3.2 Configurations for Windows
<details>
<summary>For Intel iGPU and Intel Arc™ A-Series Graphics</summary>
```cmd
set SYCL_CACHE_PERSISTENT=1
```
</details>
> [!NOTE]
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the ModelScope repo id for the ModelScope ChatGLM3 model to be downloaded, or the path to the ModelScope checkpoint folder. It is default to be `'ZhipuAI/chatglm3-6b'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
#### Sample Output
#### [ZhipuAI/chatglm3-6b](https://modelscope.cn/models/ZhipuAI/chatglm3-6b/summary)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<|user|>
AI是什么
<|assistant|>
-------------------- Output --------------------
[gMASK]sop <|user|>
AI是什么
<|assistant|> AI是人工智能Artificial Intelligence的缩写指的是通过计算机程序和算法模拟人类智能的技术。AI可以帮助我们解决各种问题例如语音
```
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<|user|>
What is AI?
<|assistant|>
-------------------- Output --------------------
[gMASK]sop <|user|>
What is AI?
<|assistant|>
AI stands for Artificial Intelligence. It refers to the development of computer systems that can perform tasks that would normally require human intelligence, such as recognizing speech or making
```