* fix: remove BIGDL_LLM_XMX_DISABLED in mddocs * fix: remove set SYCL_CACHE_PERSISTENT=1 in example * fix: remove BIGDL_LLM_XMX_DISABLED in workflows * fix: merge igpu and A-series Graphics * fix: remove set BIGDL_LLM_XMX_DISABLED=1 in example * fix: remove BIGDL_LLM_XMX_DISABLED in workflows * fix: merge igpu and A-series Graphics * fix: textual adjustment * fix: textual adjustment * fix: textual adjustment
		
			
				
	
	
		
			246 lines
		
	
	
		
			No EOL
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			246 lines
		
	
	
		
			No EOL
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
# Running Lightweight Serving using IPEX-LLM on one Intel GPU
 | 
						|
 | 
						|
## Requirements
 | 
						|
 | 
						|
To run this example with IPEX-LLM on one Intel GPU, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
						|
 | 
						|
## Example
 | 
						|
 | 
						|
### 1. Install
 | 
						|
 | 
						|
#### 1.1 Installation on Linux
 | 
						|
We suggest using conda to manage environment:
 | 
						|
```bash
 | 
						|
conda create -n llm python=3.11
 | 
						|
conda activate llm
 | 
						|
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
						|
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
						|
pip install fastapi uvicorn openai
 | 
						|
pip install gradio # for gradio web UI
 | 
						|
conda install -c conda-forge -y gperftools=2.10 # to enable tcmalloc
 | 
						|
 | 
						|
# for internlm-xcomposer2-vl-7b
 | 
						|
pip install transformers==4.31.0
 | 
						|
pip install accelerate timm==0.4.12 sentencepiece==0.1.99 gradio==3.44.4 markdown2==2.4.10 xlsxwriter==3.1.2 einops
 | 
						|
 | 
						|
# for whisper-large-v3
 | 
						|
pip install transformers==4.36.2
 | 
						|
pip install datasets soundfile librosa # required by audio processing
 | 
						|
```
 | 
						|
 | 
						|
#### 1.2 Installation on Windows
 | 
						|
We suggest using conda to manage environment:
 | 
						|
```bash
 | 
						|
conda create -n llm python=3.11 libuv
 | 
						|
conda activate llm
 | 
						|
 | 
						|
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
						|
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
						|
pip install fastapi uvicorn openai
 | 
						|
pip install gradio # for gradio web UI
 | 
						|
conda install -c conda-forge -y gperftools=2.10 # to enable tcmalloc
 | 
						|
 | 
						|
# for glm-4v-9b
 | 
						|
pip install transformers==4.42.4 "trl<0.12.0"
 | 
						|
 | 
						|
# for internlm-xcomposer2-vl-7b
 | 
						|
pip install transformers==4.31.0
 | 
						|
pip install accelerate timm==0.4.12 sentencepiece==0.1.99 gradio==3.44.4 markdown2==2.4.10 xlsxwriter==3.1.2 einops
 | 
						|
 | 
						|
# for whisper-large-v3
 | 
						|
pip install transformers==4.36.2
 | 
						|
pip install datasets soundfile librosa # required by audio processing
 | 
						|
```
 | 
						|
 | 
						|
### 2. Configures OneAPI environment variables for Linux
 | 
						|
 | 
						|
> [!NOTE]
 | 
						|
> Skip this step if you are running on Windows.
 | 
						|
 | 
						|
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
 | 
						|
 | 
						|
```bash
 | 
						|
source /opt/intel/oneapi/setvars.sh
 | 
						|
```
 | 
						|
 | 
						|
### 3. Runtime Configurations
 | 
						|
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
 | 
						|
#### 3.1 Configurations for Linux
 | 
						|
<details>
 | 
						|
 | 
						|
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
 | 
						|
 | 
						|
```bash
 | 
						|
export USE_XETLA=OFF
 | 
						|
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
						|
export SYCL_CACHE_PERSISTENT=1
 | 
						|
```
 | 
						|
 | 
						|
</details>
 | 
						|
 | 
						|
<details>
 | 
						|
 | 
						|
<summary>For Intel Data Center GPU Max Series</summary>
 | 
						|
 | 
						|
```bash
 | 
						|
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
 | 
						|
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
						|
export SYCL_CACHE_PERSISTENT=1
 | 
						|
export ENABLE_SDP_FUSION=1
 | 
						|
```
 | 
						|
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
 | 
						|
</details>
 | 
						|
 | 
						|
<details>
 | 
						|
 | 
						|
<summary>For Intel iGPU</summary>
 | 
						|
 | 
						|
```bash
 | 
						|
export SYCL_CACHE_PERSISTENT=1
 | 
						|
```
 | 
						|
 | 
						|
</details>
 | 
						|
 | 
						|
#### 3.2 Configurations for Windows
 | 
						|
<details>
 | 
						|
 | 
						|
<summary>For Intel iGPU and Intel Arc™ A-Series Graphics</summary>
 | 
						|
 | 
						|
```cmd
 | 
						|
set SYCL_CACHE_PERSISTENT=1
 | 
						|
```
 | 
						|
 | 
						|
</details>
 | 
						|
 | 
						|
 | 
						|
> [!NOTE]
 | 
						|
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
 | 
						|
 | 
						|
### 4. Running example
 | 
						|
 | 
						|
```
 | 
						|
python ./lightweight_serving.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --low-bit LOW_BIT --port PORT
 | 
						|
```
 | 
						|
 | 
						|
Arguments info:
 | 
						|
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the model (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`.
 | 
						|
- `--low-bit LOW_BIT`: Sets the low bit optimizations (such as 'sym_int4', 'fp16', 'fp8' and 'fp6') for the model. It is default to be `sym_int4`.
 | 
						|
- `--port PORT`: The serving access port. It is default to be `8000`.
 | 
						|
 | 
						|
 | 
						|
### 5. Sample Input and Output
 | 
						|
 | 
						|
We can use `curl` to test serving api. And need to set no_proxy to ensure that requests are not forwarded by a proxy. `export no_proxy=localhost,127.0.0.1`
 | 
						|
 | 
						|
#### /generate
 | 
						|
 | 
						|
```bash
 | 
						|
curl -X POST -H "Content-Type: application/json" -d '{
 | 
						|
  "inputs": "What is AI?",
 | 
						|
  "parameters": {
 | 
						|
    "max_new_tokens": 32,
 | 
						|
    "min_new_tokens": 32,
 | 
						|
    "repetition_penalty": 1.0,
 | 
						|
    "temperature": 1.0,
 | 
						|
    "do_sample": false,
 | 
						|
    "top_k": 5,
 | 
						|
    "tok_p": 1.0
 | 
						|
  },
 | 
						|
  "stream": false
 | 
						|
}' http://localhost:8000/generate
 | 
						|
```
 | 
						|
 | 
						|
#### /generate_stream
 | 
						|
 | 
						|
```bash
 | 
						|
curl -X POST -H "Content-Type: application/json" -d '{
 | 
						|
  "inputs": "What is AI?",
 | 
						|
  "parameters": {
 | 
						|
    "max_new_tokens": 32,
 | 
						|
    "min_new_tokens": 32,
 | 
						|
    "repetition_penalty": 1.0,
 | 
						|
    "temperature": 1.0,
 | 
						|
    "do_sample": false,
 | 
						|
    "top_k": 5,
 | 
						|
    "tok_p": 1.0
 | 
						|
  },
 | 
						|
  "stream": false
 | 
						|
}' http://localhost:8000/generate_stream
 | 
						|
```
 | 
						|
 | 
						|
#### /v1/chat/completions
 | 
						|
 | 
						|
```bash
 | 
						|
curl http://localhost:8000/v1/chat/completions \
 | 
						|
  -H "Content-Type: application/json" \
 | 
						|
  -d '{
 | 
						|
    "model": "Llama-2-7b-chat-hf",
 | 
						|
    "messages": [{"role": "user", "content": "Hello! What is your name?"}],
 | 
						|
    "stream": false
 | 
						|
  }'
 | 
						|
```
 | 
						|
 | 
						|
##### Image input
 | 
						|
 | 
						|
image input only supports [internlm-xcomposer2-vl-7b](https://huggingface.co/internlm/internlm-xcomposer2-vl-7b) and [glm-4v-9b](https://huggingface.co/THUDM/glm-4v-9b) now. And they should both install specific transformers version to run.
 | 
						|
```bash
 | 
						|
curl http://localhost:8000/v1/chat/completions \
 | 
						|
  -H "Content-Type: application/json" \
 | 
						|
  -d '{
 | 
						|
    "model": "internlm-xcomposer2-vl-7b",
 | 
						|
    "messages": [
 | 
						|
      {
 | 
						|
        "role": "user",
 | 
						|
        "content": [
 | 
						|
          {
 | 
						|
            "type": "text",
 | 
						|
            "text": "What'\''s in this image?"
 | 
						|
          },
 | 
						|
          {
 | 
						|
            "type": "image_url",
 | 
						|
            "image_url": {
 | 
						|
              "url": "http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg"
 | 
						|
            }
 | 
						|
          }
 | 
						|
        ]
 | 
						|
      }
 | 
						|
    ],
 | 
						|
    "max_tokens": 128
 | 
						|
  }'
 | 
						|
```
 | 
						|
 | 
						|
#### /v1/completions
 | 
						|
 | 
						|
```bash
 | 
						|
curl http://localhost:8000/v1/completions \
 | 
						|
  -H "Content-Type: application/json" \
 | 
						|
  -d '{
 | 
						|
    "model": "Llama-2-7b-chat-hf",
 | 
						|
    "prompt": "Once upon a time",
 | 
						|
    "max_tokens": 32,
 | 
						|
    "stream": false
 | 
						|
  }'
 | 
						|
```
 | 
						|
 | 
						|
#### v1/audio/transcriptions
 | 
						|
 | 
						|
ASR only supports [whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) now. And `whisper-large-v3` just can be used to transcription audio. The audio file_type should be supported by `librosa.load`.
 | 
						|
```bash
 | 
						|
curl http://localhost:8000/v1/audio/transcriptions \
 | 
						|
  -H "Content-Type: multipart/form-data" \
 | 
						|
  -F file="@/llm/test.mp3" \
 | 
						|
  -F model="whisper-large-v3" \
 | 
						|
  -F languag="zh"
 | 
						|
```
 | 
						|
 | 
						|
### 6. Benchmark with wrk
 | 
						|
 | 
						|
Please refer to [here](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/Pipeline-Parallel-Serving#4-benchmark-with-wrk) for more details
 | 
						|
 | 
						|
## 7. Using the `benchmark.py` Script
 | 
						|
 | 
						|
Please refer to [here](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/Pipeline-Parallel-Serving#5-using-the-benchmarkpy-script) for more details
 | 
						|
 | 
						|
## 8. Gradio Web UI
 | 
						|
 | 
						|
Please refer to [here](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/Pipeline-Parallel-Serving#6-gradio-web-ui) for more details |