ipex-llm/python/llm/example/CPU/ModelScope-Models/README.md
ZehuaCao 56cb992497
LLM: Modify CPU Installation Command for most examples (#11049)
* init

* refine

* refine

* refine

* modify hf-agent example

* modify all CPU model example

* remove readthedoc modify

* replace powershell with cmd

* fix repo

* fix repo

* update

* remove comment on windows code block

* update

* update

* update

* update

---------

Co-authored-by: xiangyuT <xiangyu.tian@intel.com>
2024-05-17 15:52:20 +08:00

93 lines
3.7 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Run ModelScope Model
In this directory, you will find example on how you could apply IPEX-LLM INT4 optimizations on ModelScope models. For illustration purposes, we utilize the [ZhipuAI/chatglm3-6b](https://modelscope.cn/models/ZhipuAI/chatglm3-6b/summary) as a reference ModelScope model.
## 0. Requirements
To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM3 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage environment:
On Linux:
```bash
conda create -n llm python=3.11
conda activate llm
# install ipex-llm with 'all' option
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
# Refer to https://github.com/modelscope/modelscope/issues/765, please make sure you are using 1.11.0 version
pip install modelscope==1.11.0
```
On Windows:
```cmd
conda create -n llm python=3.11
conda activate llm
pip install --pre --upgrade ipex-llm[all]
pip install modelscope==1.11.0
```
### 2. Run
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the ModelScope repo id for the ModelScope ChatGLM3 model to be downloaded, or the path to the ModelScope checkpoint folder. It is default to be `'ZhipuAI/chatglm3-6b'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
> **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
>
> Please select the appropriate size of the ChatGLM3 model based on the capabilities of your machine.
#### 2.1 Client
On client Windows machine, it is recommended to run directly with full utilization of all cores:
```cmd
python ./generate.py
```
#### 2.2 Server
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
E.g. on Linux,
```bash
# set IPEX-LLM env variables
source ipex-llm-init
# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./generate.py
```
#### 2.3 Sample Output
#### [ZhipuAI/chatglm3-6b](https://modelscope.cn/models/ZhipuAI/chatglm3-6b/summary)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<|user|>
AI是什么
<|assistant|>
-------------------- Output --------------------
[gMASK]sop <|user|>
AI是什么
<|assistant|> AI是人工智能Artificial Intelligence的缩写指的是通过计算机程序和算法模拟人类智能的技术。AI可以帮助我们解决各种问题例如语音
```
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<|user|>
What is AI?
<|assistant|>
-------------------- Output --------------------
[gMASK]sop <|user|>
What is AI?
<|assistant|>
AI stands for Artificial Intelligence. It refers to the development of computer systems that can perform tasks that would normally require human intelligence, such as recognizing speech or making
```