add basic glm-edge-v support (#12533)

This commit is contained in:
Yishuo Wang 2024-12-12 17:25:48 +08:00 committed by GitHub
parent 3e0823d2ae
commit ffce86d69f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 18 additions and 5 deletions

View file

@ -1504,6 +1504,17 @@ def _optimize_post(model, lightweight_bmm=False):
convert_forward(model, module.GlmAttention, glm_attention_forward) convert_forward(model, module.GlmAttention, glm_attention_forward)
glm_model_forward = glm_model_forward_wrapper(module.GlmModel.forward) glm_model_forward = glm_model_forward_wrapper(module.GlmModel.forward)
convert_forward(model, module.GlmModel, glm_model_forward) convert_forward(model, module.GlmModel, glm_model_forward)
if hasattr(model.model, "vision"):
# glm-edge-v series
vision_module_name = model.model.vision.__class__.__module__
vision_module = importlib.import_module(vision_module_name)
from transformers.models.siglip.modeling_siglip import SiglipAttention
from ipex_llm.transformers.models.chatglm4v import vision_model_forward
from ipex_llm.transformers.models.minicpmv import siglip_attention_forward
convert_forward(model, vision_module.VisionModel, vision_model_forward)
convert_forward(model, SiglipAttention, siglip_attention_forward)
elif "mpt" in model.config.model_type: elif "mpt" in model.config.model_type:
if model.config.architectures is not None: if model.config.architectures is not None:
modeling_module_name = model.__class__.__module__ modeling_module_name = model.__class__.__module__

View file

@ -37,7 +37,6 @@ import torch
from typing import Optional, Tuple from typing import Optional, Tuple
from transformers.cache_utils import Cache from transformers.cache_utils import Cache
from transformers.models.glm.modeling_glm import GlmAttention, GlmMLP
from transformers.models.glm.modeling_glm import repeat_kv, apply_rotary_pos_emb from transformers.models.glm.modeling_glm import repeat_kv, apply_rotary_pos_emb
from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache
from ipex_llm.transformers.models.common import merge_qkv_base from ipex_llm.transformers.models.common import merge_qkv_base
@ -46,11 +45,12 @@ from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp
def merge_qkv(module: torch.nn.Module): def merge_qkv(module: torch.nn.Module):
merge_qkv_base(module, GlmAttention) merge_qkv_base(module, "GlmAttention")
merge_qkv_base(module, "SiglipAttention")
def split_mlp(module: torch.nn.Module): def split_mlp(module: torch.nn.Module):
if isinstance(module, GlmMLP): if module.__class__.__name__ == "GlmMLP":
gate_weight, up_weight = module.gate_up_proj.weight.data.chunk(2, dim=0) gate_weight, up_weight = module.gate_up_proj.weight.data.chunk(2, dim=0)
gate_proj = torch.nn.Linear(0, 0, bias=False) gate_proj = torch.nn.Linear(0, 0, bias=False)
@ -157,6 +157,7 @@ def glm_model_forward_wrapper(origin_forward):
def glm_model_forward( def glm_model_forward(
self, self,
input_ids: torch.LongTensor = None, input_ids: torch.LongTensor = None,
images: torch.Tensor = None,
attention_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None, past_key_values: Optional[Cache] = None,
@ -166,7 +167,7 @@ def glm_model_forward_wrapper(origin_forward):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs, **kwargs,
): ):
# ipex-llm changes start # ipex-llm changes start
# IPEX-LLM OPT: kv cache and quantize kv cache # IPEX-LLM OPT: kv cache and quantize kv cache
@ -187,6 +188,7 @@ def glm_model_forward_wrapper(origin_forward):
return origin_forward( return origin_forward(
self=self, self=self,
input_ids=input_ids, input_ids=input_ids,
images=images,
attention_mask=attention_mask, attention_mask=attention_mask,
position_ids=position_ids, position_ids=position_ids,
past_key_values=past_key_values, past_key_values=past_key_values,
@ -196,7 +198,7 @@ def glm_model_forward_wrapper(origin_forward):
output_hidden_states=output_hidden_states, output_hidden_states=output_hidden_states,
return_dict=return_dict, return_dict=return_dict,
cache_position=cache_position, cache_position=cache_position,
**flash_attn_kwargs, **kwargs,
) )
return glm_model_forward return glm_model_forward