add basic glm-edge support (#12531)
This commit is contained in:
		
							parent
							
								
									dbaf4abcb3
								
							
						
					
					
						commit
						3e0823d2ae
					
				
					 2 changed files with 219 additions and 1 deletions
				
			
		| 
						 | 
				
			
			@ -1070,6 +1070,10 @@ def _optimize_pre(model, qtype=None):
 | 
			
		|||
                    model.apply(split_mlp)
 | 
			
		||||
            elif model.config.num_layers in [40, 28]:
 | 
			
		||||
                model.apply(split_mlp)
 | 
			
		||||
    elif model.config.model_type == "glm":
 | 
			
		||||
        from ipex_llm.transformers.models.glm import merge_qkv, split_mlp
 | 
			
		||||
        model.apply(merge_qkv)
 | 
			
		||||
        model.apply(split_mlp)
 | 
			
		||||
 | 
			
		||||
    return model
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -1487,7 +1491,19 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
			
		|||
                    # workaround glm4-9b fp16 overflow
 | 
			
		||||
                    from ipex_llm.transformers.models.chatglm4 import chatglm4_block_forward
 | 
			
		||||
                    convert_forward(model, module.GLMBlock, chatglm4_block_forward)
 | 
			
		||||
 | 
			
		||||
    elif model.config.model_type == "glm":
 | 
			
		||||
        # glm-edge series
 | 
			
		||||
        modeling_module_name = model.__class__.__module__
 | 
			
		||||
        module = importlib.import_module(modeling_module_name)
 | 
			
		||||
        from ipex_llm.transformers.models.common import rms_norm_forward
 | 
			
		||||
        from ipex_llm.transformers.models.common import mlp_silu_forward
 | 
			
		||||
        from ipex_llm.transformers.models.glm import glm_attention_forward
 | 
			
		||||
        from ipex_llm.transformers.models.glm import glm_model_forward_wrapper
 | 
			
		||||
        convert_forward(model, module.GlmRMSNorm, rms_norm_forward)
 | 
			
		||||
        convert_forward(model, module.GlmMLP, mlp_silu_forward)
 | 
			
		||||
        convert_forward(model, module.GlmAttention, glm_attention_forward)
 | 
			
		||||
        glm_model_forward = glm_model_forward_wrapper(module.GlmModel.forward)
 | 
			
		||||
        convert_forward(model, module.GlmModel, glm_model_forward)
 | 
			
		||||
    elif "mpt" in model.config.model_type:
 | 
			
		||||
        if model.config.architectures is not None:
 | 
			
		||||
            modeling_module_name = model.__class__.__module__
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										202
									
								
								python/llm/src/ipex_llm/transformers/models/glm.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										202
									
								
								python/llm/src/ipex_llm/transformers/models/glm.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,202 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
# This file is adapted from
 | 
			
		||||
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/glm/modeling_glm.py
 | 
			
		||||
#
 | 
			
		||||
# which is licensed under Apache License 2.0:
 | 
			
		||||
#
 | 
			
		||||
# Copyright 2024 The GLM & ZhipuAI team and HuggingFace Inc. team. All rights reserved.
 | 
			
		||||
#
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
 | 
			
		||||
from typing import Optional, Tuple
 | 
			
		||||
from transformers.cache_utils import Cache
 | 
			
		||||
from transformers.models.glm.modeling_glm import GlmAttention, GlmMLP
 | 
			
		||||
from transformers.models.glm.modeling_glm import repeat_kv, apply_rotary_pos_emb
 | 
			
		||||
from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache
 | 
			
		||||
from ipex_llm.transformers.models.common import merge_qkv_base
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def merge_qkv(module: torch.nn.Module):
 | 
			
		||||
    merge_qkv_base(module, GlmAttention)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def split_mlp(module: torch.nn.Module):
 | 
			
		||||
    if isinstance(module, GlmMLP):
 | 
			
		||||
        gate_weight, up_weight = module.gate_up_proj.weight.data.chunk(2, dim=0)
 | 
			
		||||
 | 
			
		||||
        gate_proj = torch.nn.Linear(0, 0, bias=False)
 | 
			
		||||
        gate_proj.weight = torch.nn.Parameter(gate_weight, requires_grad=False)
 | 
			
		||||
        gate_proj.in_features = gate_weight.size(1)
 | 
			
		||||
        gate_proj.out_features = gate_weight.size(0)
 | 
			
		||||
 | 
			
		||||
        up_proj = torch.nn.Linear(0, 0, bias=False)
 | 
			
		||||
        up_proj.weight = torch.nn.Parameter(up_weight, requires_grad=False)
 | 
			
		||||
        up_proj.in_features = up_weight.size(1)
 | 
			
		||||
        up_proj.out_features = up_weight.size(0)
 | 
			
		||||
 | 
			
		||||
        module.gate_proj = gate_proj
 | 
			
		||||
        module.up_proj = up_proj
 | 
			
		||||
 | 
			
		||||
        del module.gate_up_proj
 | 
			
		||||
 | 
			
		||||
        # rename activation function
 | 
			
		||||
        module.act_fn = module.activation_fn
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def glm_attention_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_value: Optional[Cache] = None,
 | 
			
		||||
    output_attentions: bool = False,
 | 
			
		||||
    use_cache: bool = False,
 | 
			
		||||
    cache_position: Optional[torch.LongTensor] = None,
 | 
			
		||||
    position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]]=None,
 | 
			
		||||
    **kwargs,
 | 
			
		||||
):
 | 
			
		||||
    bsz, q_len, _ = hidden_states.size()
 | 
			
		||||
 | 
			
		||||
    qkv = self.qkv_proj(hidden_states)
 | 
			
		||||
    qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
 | 
			
		||||
    qkv = qkv.transpose(1, 2)
 | 
			
		||||
    query_states, key_states, value_states = qkv.split([self.num_heads,
 | 
			
		||||
                                                        self.num_key_value_heads,
 | 
			
		||||
                                                        self.num_key_value_heads], dim=1)
 | 
			
		||||
 | 
			
		||||
    cos, sin = position_embeddings
 | 
			
		||||
    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
 | 
			
		||||
 | 
			
		||||
    use_quantizekv = isinstance(past_key_value, DynamicFp8Cache)
 | 
			
		||||
    # sin and cos are specific to RoPE models; cache_position needed for the static cache
 | 
			
		||||
    cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
 | 
			
		||||
    key_states, value_states = past_key_value.update(key_states, value_states,
 | 
			
		||||
                                                     self.layer_idx, cache_kwargs)
 | 
			
		||||
 | 
			
		||||
    kv_seq_len = key_states.size(-2)
 | 
			
		||||
    if attention_mask is not None:  # no matter the length, we just slice it
 | 
			
		||||
        attention_mask = attention_mask[:, :, :, : kv_seq_len]
 | 
			
		||||
 | 
			
		||||
    if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        if use_quantizekv:
 | 
			
		||||
            attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
 | 
			
		||||
                                            attention_mask)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = xe_addons.sdp(query_states, key_states, value_states,
 | 
			
		||||
                                        attention_mask)
 | 
			
		||||
    elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        if use_quantizekv:
 | 
			
		||||
            attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
 | 
			
		||||
                                                   value_states, attention_mask)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = xe_addons.sdp_causal(query_states, key_states,
 | 
			
		||||
                                               value_states, attention_mask)
 | 
			
		||||
    else:
 | 
			
		||||
        if use_quantizekv:
 | 
			
		||||
            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
			
		||||
                                                            query_states.dtype)
 | 
			
		||||
        # repeat k/v heads if n_kv_heads < n_heads
 | 
			
		||||
        key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
			
		||||
        value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
			
		||||
 | 
			
		||||
        attn_weights = torch.matmul(query_states,
 | 
			
		||||
                                    key_states.transpose(2, 3)) * self.scaling
 | 
			
		||||
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            attn_weights = attn_weights + attention_mask
 | 
			
		||||
 | 
			
		||||
        # upcast attention to fp32
 | 
			
		||||
        attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
 | 
			
		||||
                                                   dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
        attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
 | 
			
		||||
                                                   training=self.training)
 | 
			
		||||
        attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
			
		||||
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
			
		||||
 | 
			
		||||
    attn_output = self.o_proj(attn_output)
 | 
			
		||||
 | 
			
		||||
    if not output_attentions:
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
    return attn_output, attn_weights, past_key_value
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def glm_model_forward_wrapper(origin_forward):
 | 
			
		||||
    def glm_model_forward(
 | 
			
		||||
        self,
 | 
			
		||||
        input_ids: torch.LongTensor = None,
 | 
			
		||||
        attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
        position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
        past_key_values: Optional[Cache] = None,
 | 
			
		||||
        inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
			
		||||
        use_cache: Optional[bool] = None,
 | 
			
		||||
        output_attentions: Optional[bool] = None,
 | 
			
		||||
        output_hidden_states: Optional[bool] = None,
 | 
			
		||||
        return_dict: Optional[bool] = None,
 | 
			
		||||
        cache_position: Optional[torch.LongTensor] = None,
 | 
			
		||||
        **flash_attn_kwargs,
 | 
			
		||||
    ):
 | 
			
		||||
        # ipex-llm changes start
 | 
			
		||||
        # IPEX-LLM OPT: kv cache and quantize kv cache
 | 
			
		||||
        inputs = input_ids if input_ids is not None else inputs_embeds
 | 
			
		||||
        use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
			
		||||
        use_cache = use_cache or inputs.device.type == 'xpu'
 | 
			
		||||
        use_quantize_kv = use_quantize_kv_cache(self.layers[0].mlp.down_proj, inputs,
 | 
			
		||||
                                                self.config.num_attention_heads //
 | 
			
		||||
                                                self.config.num_key_value_heads)
 | 
			
		||||
 | 
			
		||||
        if use_cache:
 | 
			
		||||
            if use_quantize_kv and not isinstance(past_key_values, DynamicFp8Cache):
 | 
			
		||||
                past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
 | 
			
		||||
            elif not use_quantize_kv and not isinstance(past_key_values, DynamicNormalCache):
 | 
			
		||||
                past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
 | 
			
		||||
        # ipex-llm changes end
 | 
			
		||||
 | 
			
		||||
        return origin_forward(
 | 
			
		||||
            self=self,
 | 
			
		||||
            input_ids=input_ids,
 | 
			
		||||
            attention_mask=attention_mask,
 | 
			
		||||
            position_ids=position_ids,
 | 
			
		||||
            past_key_values=past_key_values,
 | 
			
		||||
            inputs_embeds=inputs_embeds,
 | 
			
		||||
            use_cache=use_cache,
 | 
			
		||||
            output_attentions=output_attentions,
 | 
			
		||||
            output_hidden_states=output_hidden_states,
 | 
			
		||||
            return_dict=return_dict,
 | 
			
		||||
            cache_position=cache_position,
 | 
			
		||||
            **flash_attn_kwargs,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    return glm_model_forward
 | 
			
		||||
		Loading…
	
		Reference in a new issue