remove obselete npu code (#11967)
This commit is contained in:
		
							parent
							
								
									a9e485eb1b
								
							
						
					
					
						commit
						fbf088f61e
					
				
					 3 changed files with 5 additions and 780 deletions
				
			
		| 
						 | 
				
			
			@ -81,21 +81,16 @@ def optimize_llm(model: torch.nn.Module):
 | 
			
		|||
        from ipex_llm.transformers.npu_models.llama import merge_qkv
 | 
			
		||||
        from ipex_llm.transformers.npu_models.llama import merge_mlp
 | 
			
		||||
        from ipex_llm.transformers.npu_models.llama import llama_model_forward
 | 
			
		||||
        from ipex_llm.transformers.npu_models.llama import llama_fused_model_forward
 | 
			
		||||
        from ipex_llm.transformers.npu_models.llama import llama_attention_forward
 | 
			
		||||
        from ipex_llm.transformers.npu_models.llama import llama_mlp_forward
 | 
			
		||||
        from transformers.models.llama.modeling_llama import LlamaModel
 | 
			
		||||
        from transformers.models.llama.modeling_llama import LlamaAttention
 | 
			
		||||
        from transformers.models.llama.modeling_llama import LlamaMLP
 | 
			
		||||
        if hasattr(model, 'pipeline_parallel_stages'):
 | 
			
		||||
            # experimental support for fused decoderlayer implementation
 | 
			
		||||
            convert_forward(model, LlamaModel, llama_fused_model_forward)
 | 
			
		||||
        else:
 | 
			
		||||
            model.apply(merge_qkv)
 | 
			
		||||
            model.apply(merge_mlp)
 | 
			
		||||
            convert_forward(model, LlamaModel, llama_model_forward)
 | 
			
		||||
            convert_forward(model, LlamaAttention, llama_attention_forward)
 | 
			
		||||
            convert_forward(model, LlamaMLP, llama_mlp_forward)
 | 
			
		||||
        model.apply(merge_qkv)
 | 
			
		||||
        model.apply(merge_mlp)
 | 
			
		||||
        convert_forward(model, LlamaModel, llama_model_forward)
 | 
			
		||||
        convert_forward(model, LlamaAttention, llama_attention_forward)
 | 
			
		||||
        convert_forward(model, LlamaMLP, llama_mlp_forward)
 | 
			
		||||
 | 
			
		||||
    elif model.config.model_type == "mistral":
 | 
			
		||||
        from ipex_llm.transformers.npu_models.mistral import merge_qkv
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -182,137 +182,6 @@ def llama_model_forward(
 | 
			
		|||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def llama_fused_model_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    input_ids: torch.LongTensor = None,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_values: Optional[List[torch.FloatTensor]] = None,
 | 
			
		||||
    inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
			
		||||
    use_cache: Optional[bool] = None,
 | 
			
		||||
    output_attentions: Optional[bool] = None,
 | 
			
		||||
    output_hidden_states: Optional[bool] = None,
 | 
			
		||||
    return_dict: Optional[bool] = None,
 | 
			
		||||
    cache_position: Optional[torch.LongTensor] = None,
 | 
			
		||||
) -> Union[Tuple, BaseModelOutputWithPast]:
 | 
			
		||||
    output_attentions = (
 | 
			
		||||
        output_attentions if output_attentions is not None
 | 
			
		||||
        else self.config.output_attentions
 | 
			
		||||
    )
 | 
			
		||||
    output_hidden_states = (
 | 
			
		||||
        output_hidden_states if output_hidden_states is not None
 | 
			
		||||
        else self.config.output_hidden_states
 | 
			
		||||
    )
 | 
			
		||||
    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
			
		||||
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
 | 
			
		||||
 | 
			
		||||
    if (input_ids is None) ^ (inputs_embeds is not None):
 | 
			
		||||
        invalidInputError(False,
 | 
			
		||||
                          ("You cannot specify both input_ids and inputs_embeds at the same time, "
 | 
			
		||||
                           "and must specify either one"))
 | 
			
		||||
 | 
			
		||||
    if self.gradient_checkpointing and self.training and use_cache:
 | 
			
		||||
        use_cache = False
 | 
			
		||||
 | 
			
		||||
    if inputs_embeds is None:
 | 
			
		||||
        inputs_embeds = self.embed_tokens(input_ids)
 | 
			
		||||
 | 
			
		||||
    past_seen_tokens = 0
 | 
			
		||||
 | 
			
		||||
    # ipex-llm changes start
 | 
			
		||||
    from ipex_llm.transformers.npu_models.kv import DynamicFusedNormalCache
 | 
			
		||||
    if use_cache and not isinstance(past_key_values, DynamicFusedNormalCache):
 | 
			
		||||
        past_key_values = DynamicFusedNormalCache.from_legacy_cache(past_key_values)
 | 
			
		||||
        past_seen_tokens = past_key_values.get_seq_length()
 | 
			
		||||
 | 
			
		||||
    if cache_position is None:
 | 
			
		||||
        cache_position = torch.arange(past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1],
 | 
			
		||||
                                      device=inputs_embeds.device)
 | 
			
		||||
    # ipex-llm changes end
 | 
			
		||||
 | 
			
		||||
    if position_ids is None:
 | 
			
		||||
        position_ids = cache_position.unsqueeze(0)
 | 
			
		||||
 | 
			
		||||
    causal_mask = self._update_causal_mask(attention_mask, inputs_embeds,
 | 
			
		||||
                                           cache_position, past_seen_tokens)
 | 
			
		||||
 | 
			
		||||
    # embed positions
 | 
			
		||||
    hidden_states = inputs_embeds
 | 
			
		||||
 | 
			
		||||
    # decoder layers
 | 
			
		||||
    all_hidden_states = () if output_hidden_states else None
 | 
			
		||||
    all_self_attns = () if output_attentions else None
 | 
			
		||||
    next_decoder_cache = None
 | 
			
		||||
 | 
			
		||||
    seq_len = hidden_states.size(1)
 | 
			
		||||
 | 
			
		||||
    if seq_len == 1:
 | 
			
		||||
        # multi_decoder = self.layers[(self.layer_end + 1) % num_layers]
 | 
			
		||||
        layer_outputs = self.multi_decoder(hidden_states,
 | 
			
		||||
                                           attention_mask=causal_mask,
 | 
			
		||||
                                           position_ids=position_ids,
 | 
			
		||||
                                           past_key_value=past_key_values,
 | 
			
		||||
                                           output_attentions=output_attentions,
 | 
			
		||||
                                           use_cache=use_cache,
 | 
			
		||||
                                           cache_position=cache_position,)
 | 
			
		||||
        hidden_states = layer_outputs[0]
 | 
			
		||||
 | 
			
		||||
        next_decoder_cache = layer_outputs[1]
 | 
			
		||||
    else:
 | 
			
		||||
        for decoder_layer in self.layers:
 | 
			
		||||
            if output_hidden_states:
 | 
			
		||||
                all_hidden_states += (hidden_states,)
 | 
			
		||||
 | 
			
		||||
            if self.gradient_checkpointing and self.training:
 | 
			
		||||
                layer_outputs = self._gradient_checkpointing_func(
 | 
			
		||||
                    decoder_layer.__call__,
 | 
			
		||||
                    hidden_states,
 | 
			
		||||
                    causal_mask,
 | 
			
		||||
                    position_ids,
 | 
			
		||||
                    past_key_values,
 | 
			
		||||
                    output_attentions,
 | 
			
		||||
                    use_cache,
 | 
			
		||||
                    cache_position,
 | 
			
		||||
                )
 | 
			
		||||
            else:
 | 
			
		||||
                layer_outputs = decoder_layer(
 | 
			
		||||
                    hidden_states,
 | 
			
		||||
                    attention_mask=causal_mask,
 | 
			
		||||
                    position_ids=position_ids,
 | 
			
		||||
                    past_key_value=past_key_values,
 | 
			
		||||
                    output_attentions=output_attentions,
 | 
			
		||||
                    use_cache=use_cache,
 | 
			
		||||
                    cache_position=cache_position,
 | 
			
		||||
                )
 | 
			
		||||
 | 
			
		||||
            hidden_states = layer_outputs[0]
 | 
			
		||||
 | 
			
		||||
            if use_cache:
 | 
			
		||||
                next_decoder_cache = layer_outputs[2 if output_attentions else 1]
 | 
			
		||||
 | 
			
		||||
            if output_attentions:
 | 
			
		||||
                all_self_attns += (layer_outputs[1],)
 | 
			
		||||
 | 
			
		||||
    hidden_states = self.norm(hidden_states)
 | 
			
		||||
 | 
			
		||||
    # add hidden states from the last decoder layer
 | 
			
		||||
    if output_hidden_states:
 | 
			
		||||
        all_hidden_states += (hidden_states,)
 | 
			
		||||
 | 
			
		||||
    # ipex-llm changes start
 | 
			
		||||
    next_cache = next_decoder_cache if use_cache else None
 | 
			
		||||
    # ipex-llm changes end
 | 
			
		||||
    if not return_dict:
 | 
			
		||||
        return tuple(v for v in [hidden_states, next_cache,
 | 
			
		||||
                                 all_hidden_states, all_self_attns] if v is not None)
 | 
			
		||||
    return BaseModelOutputWithPast(
 | 
			
		||||
        last_hidden_state=hidden_states,
 | 
			
		||||
        past_key_values=next_cache,
 | 
			
		||||
        hidden_states=all_hidden_states,
 | 
			
		||||
        attentions=all_self_attns,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def llama_attention_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,639 +0,0 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
# Some parts of this file is adapted from
 | 
			
		||||
# https://github.com/huggingface/transformers/blob/main/src/transformers/generation/utils.py
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from torch import nn
 | 
			
		||||
from torch.nn import CrossEntropyLoss
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
import torch.distributed as dist
 | 
			
		||||
import os
 | 
			
		||||
import time
 | 
			
		||||
import numpy as np
 | 
			
		||||
from typing import Callable, List, Optional, Union, Tuple
 | 
			
		||||
from types import SimpleNamespace
 | 
			
		||||
import transformers
 | 
			
		||||
from transformers import GenerationConfig, LogitsProcessorList, StoppingCriteriaList
 | 
			
		||||
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
 | 
			
		||||
from ipex_llm.utils.common import invalidInputError
 | 
			
		||||
from ipex_llm.ggml.quantize import ggml_tensor_qtype
 | 
			
		||||
import logging
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
# patch GenerationMixin.generate
 | 
			
		||||
from transformers import GenerationMixin
 | 
			
		||||
original_generate = GenerationMixin.generate
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class DummyLayer(nn.Module):
 | 
			
		||||
    def __init__(self, *args):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        # to avoid AttributeError in https://github.com/intel-analytics/ipex-llm/blob/main/
 | 
			
		||||
        # python/llm/src/ipex_llm/transformers/models/llama.py#L2076
 | 
			
		||||
        self.weight = nn.Parameter(torch.empty(0,), requires_grad=False)
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        return x
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Dummy_MLPLayer(nn.Module):
 | 
			
		||||
    def __init__(self, *args):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        # to avoid AttributeError in https://github.com/intel-analytics/ipex-llm/blob/main/
 | 
			
		||||
        # python/llm/src/ipex_llm/transformers/models/llama.py#L119
 | 
			
		||||
        self.up_proj = DummyLayer()
 | 
			
		||||
        self.down_proj = DummyLayer()
 | 
			
		||||
        self.shared_expert = SimpleNamespace()
 | 
			
		||||
        self.shared_expert.up_proj = DummyLayer()
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        return x
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Dummy_DecoderLayer(nn.Module):
 | 
			
		||||
    def __init__(self, *args):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        # to avoid AttributeError
 | 
			
		||||
        self.input_layernorm = DummyLayer()
 | 
			
		||||
        self.mlp = Dummy_MLPLayer()
 | 
			
		||||
 | 
			
		||||
    def forward(self, hidden_states, *args, **kwargs):
 | 
			
		||||
        past_key_value = kwargs.get('past_key_value', None)
 | 
			
		||||
        use_cache = kwargs.get('use_cache', False)
 | 
			
		||||
        outputs = (hidden_states,)
 | 
			
		||||
        if use_cache:
 | 
			
		||||
            outputs += (past_key_value,)
 | 
			
		||||
        return outputs
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Dummy_GLMBlock(nn.Module):
 | 
			
		||||
    def __init__(self, *args):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        # to avoid AttributeError
 | 
			
		||||
        self.input_layernorm = DummyLayer()
 | 
			
		||||
        self.mlp = Dummy_MLPLayer()
 | 
			
		||||
 | 
			
		||||
    def forward(
 | 
			
		||||
            self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
 | 
			
		||||
    ):
 | 
			
		||||
        if kv_cache is None:
 | 
			
		||||
            return hidden_states, ()
 | 
			
		||||
        return hidden_states, kv_cache
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def init_pipeline_parallel():
 | 
			
		||||
    import oneccl_bindings_for_pytorch
 | 
			
		||||
    os.environ["MASTER_ADDR"] = os.environ.get("MASTER_ADDR", "127.0.0.1")
 | 
			
		||||
    os.environ["MASTER_PORT"] = os.environ.get("MASTER_PORT", "29500")
 | 
			
		||||
    dist.init_process_group('ccl')
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def low_mem_convert(model):
 | 
			
		||||
    from ipex_llm.transformers.convert import convert_forward
 | 
			
		||||
    import importlib
 | 
			
		||||
    if 'llama' in model.config.model_type:
 | 
			
		||||
        convert_forward(
 | 
			
		||||
            model,
 | 
			
		||||
            transformers.models.llama.modeling_llama.LlamaForCausalLM,
 | 
			
		||||
            llama_causallm_forward_4_37_lowmem)
 | 
			
		||||
    elif model.config.model_type == "chatglm" and not hasattr(model.config, "vision_config"):
 | 
			
		||||
        if model.config.num_layers == 40:
 | 
			
		||||
            # for glm4-9b
 | 
			
		||||
            modeling_module_name = model.__class__.__module__
 | 
			
		||||
            module = importlib.import_module(modeling_module_name)
 | 
			
		||||
            convert_forward(
 | 
			
		||||
                model,
 | 
			
		||||
                module.ChatGLMForConditionalGeneration,
 | 
			
		||||
                glm4_conditional_generation_forward_lowmem)
 | 
			
		||||
        else:
 | 
			
		||||
            # for chatglm3-6b
 | 
			
		||||
            modeling_module_name = model.__class__.__module__
 | 
			
		||||
            module = importlib.import_module(modeling_module_name)
 | 
			
		||||
            convert_forward(
 | 
			
		||||
                model,
 | 
			
		||||
                module.ChatGLMForConditionalGeneration,
 | 
			
		||||
                chatglm3_conditional_generation_forward_lowmem)
 | 
			
		||||
    return model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def pipeline_parallel(model, pipeline_parallel_stages, torch_dtype=torch.float32, device=None):
 | 
			
		||||
    global num_layers
 | 
			
		||||
    if hasattr(model.config, 'num_hidden_layers'):
 | 
			
		||||
        num_layers = model.config.num_hidden_layers
 | 
			
		||||
    elif hasattr(model.config, 'num_layers'):
 | 
			
		||||
        # for chatglm3-6b
 | 
			
		||||
        num_layers = model.config.num_layers
 | 
			
		||||
 | 
			
		||||
    slice_size = (num_layers + pipeline_parallel_stages - 1) // pipeline_parallel_stages
 | 
			
		||||
 | 
			
		||||
    local_rank = dist.get_rank()
 | 
			
		||||
 | 
			
		||||
    global layer_start
 | 
			
		||||
    global layer_end
 | 
			
		||||
    layer_start = slice_size * local_rank
 | 
			
		||||
    layer_end = layer_start + min(slice_size, num_layers - layer_start)
 | 
			
		||||
 | 
			
		||||
    if model.config.model_type == "qwen" and hasattr(model.config, "visual"):
 | 
			
		||||
        # for Qwen-VL-Chat
 | 
			
		||||
        for i in range(num_layers):
 | 
			
		||||
            if i < layer_start or i >= layer_end:
 | 
			
		||||
                model._modules['transformer'].h[i] = Dummy_DecoderLayer()
 | 
			
		||||
        if local_rank != 0:
 | 
			
		||||
            model._modules['transformer'].wte = DummyLayer()
 | 
			
		||||
            model._modules['transformer'].drop = DummyLayer()
 | 
			
		||||
        if local_rank != pipeline_parallel_stages - 1:
 | 
			
		||||
            model._modules['transformer'].ln_f = DummyLayer()
 | 
			
		||||
            model._modules['ln_f'] = DummyLayer()
 | 
			
		||||
            model._modules['lm_head'] = DummyLayer()
 | 
			
		||||
    elif model.config.model_type == "chatglm":
 | 
			
		||||
        # for chatglm3-6b, glm-4-9b-chat
 | 
			
		||||
        for i in range(num_layers):
 | 
			
		||||
            if i < layer_start or i >= layer_end:
 | 
			
		||||
                model._modules['transformer'].encoder.layers[i] = Dummy_GLMBlock()
 | 
			
		||||
            else:
 | 
			
		||||
                model._modules['transformer'].encoder.layers[i].self_attention.num_layers = \
 | 
			
		||||
                    i - layer_start
 | 
			
		||||
 | 
			
		||||
        if local_rank != 0:
 | 
			
		||||
            model._modules['transformer'].embedding = DummyLayer()
 | 
			
		||||
        if local_rank != pipeline_parallel_stages - 1:
 | 
			
		||||
            model._modules['transformer'].encoder.final_layernorm = DummyLayer()
 | 
			
		||||
            model._modules['transformer'].output_layer = DummyLayer()
 | 
			
		||||
    else:
 | 
			
		||||
        for i in range(num_layers):
 | 
			
		||||
            if i < layer_start or i >= layer_end:
 | 
			
		||||
                model._modules['model'].layers[i] = Dummy_DecoderLayer()
 | 
			
		||||
            else:
 | 
			
		||||
                model._modules['model'].layers[i].self_attn.layer_idx = i - layer_start
 | 
			
		||||
 | 
			
		||||
        if local_rank != 0:
 | 
			
		||||
            model._modules['model'].embed_tokens = DummyLayer()
 | 
			
		||||
        if local_rank != pipeline_parallel_stages - 1:
 | 
			
		||||
            model._modules['model'].norm = DummyLayer()
 | 
			
		||||
            model._modules['lm_head'] = DummyLayer()
 | 
			
		||||
 | 
			
		||||
    _enable_lowmem = os.getenv('IPEX_LLM_LOW_MEM')
 | 
			
		||||
    _enable_lowmem = (_enable_lowmem is not None) and (_enable_lowmem.lower() == "1")
 | 
			
		||||
    if _enable_lowmem:
 | 
			
		||||
        model = low_mem_convert(model)
 | 
			
		||||
 | 
			
		||||
    model.pipeline_parallel_stages = pipeline_parallel_stages
 | 
			
		||||
    model.layer_start = layer_start
 | 
			
		||||
    model.layer_end = layer_end
 | 
			
		||||
    model.num_layers = num_layers
 | 
			
		||||
    if torch_dtype == torch.float16:
 | 
			
		||||
        model = model.half()
 | 
			
		||||
    if device is None:
 | 
			
		||||
        model = model.to(f'xpu:{local_rank}')
 | 
			
		||||
    else:
 | 
			
		||||
        model.to(device)
 | 
			
		||||
    return model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.no_grad()
 | 
			
		||||
def generate(
 | 
			
		||||
    self,
 | 
			
		||||
    inputs: Optional[torch.Tensor] = None,
 | 
			
		||||
    generation_config: Optional[GenerationConfig] = None,
 | 
			
		||||
    logits_processor: Optional[LogitsProcessorList] = None,
 | 
			
		||||
    stopping_criteria: Optional[StoppingCriteriaList] = None,
 | 
			
		||||
    prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]]=None,
 | 
			
		||||
    synced_gpus: Optional[bool] = None,
 | 
			
		||||
    assistant_model: Optional["PreTrainedModel"] = None,
 | 
			
		||||
    streamer: Optional["BaseStreamer"] = None,
 | 
			
		||||
    **kwargs,
 | 
			
		||||
):
 | 
			
		||||
    if hasattr(self, 'pipeline_parallel_stages') and self.pipeline_parallel_stages > 1:
 | 
			
		||||
        # priority: `generation_config` argument > `model.generation_config`
 | 
			
		||||
        if generation_config is None:
 | 
			
		||||
            if (
 | 
			
		||||
                self.generation_config._from_model_config
 | 
			
		||||
                and self.generation_config._original_object_hash == hash(self.generation_config)
 | 
			
		||||
                and self.config._has_non_default_generation_parameters()
 | 
			
		||||
            ):
 | 
			
		||||
                new_generation_config = GenerationConfig.from_model_config(self.config)
 | 
			
		||||
                if new_generation_config != self.generation_config:
 | 
			
		||||
                    self.generation_config = new_generation_config
 | 
			
		||||
            generation_config = self.generation_config
 | 
			
		||||
 | 
			
		||||
        if generation_config.pad_token_id is None and generation_config.eos_token_id is not None:
 | 
			
		||||
            eos_token_id = generation_config.eos_token_id
 | 
			
		||||
            if isinstance(eos_token_id, list):
 | 
			
		||||
                eos_token_id = eos_token_id[0]
 | 
			
		||||
            logger.warning("Setting `pad_token_id` to `eos_token_id`: "
 | 
			
		||||
                           f"{eos_token_id} for open-end generation.")
 | 
			
		||||
            generation_config.pad_token_id = eos_token_id
 | 
			
		||||
 | 
			
		||||
        if generation_config is not None and generation_config.max_new_tokens is not None:
 | 
			
		||||
            max_new_tokens = generation_config.pop("max_new_tokens")
 | 
			
		||||
        else:
 | 
			
		||||
            max_new_tokens = kwargs.pop("max_new_tokens", None)
 | 
			
		||||
 | 
			
		||||
        return self.pipeline_parallel_generate(inputs=inputs,
 | 
			
		||||
                                               max_new_tokens=max_new_tokens,
 | 
			
		||||
                                               generation_config=generation_config,
 | 
			
		||||
                                               **kwargs)
 | 
			
		||||
 | 
			
		||||
    return original_generate(self,
 | 
			
		||||
                             inputs=inputs,
 | 
			
		||||
                             generation_config=generation_config,
 | 
			
		||||
                             logits_processor=logits_processor,
 | 
			
		||||
                             stopping_criteria=stopping_criteria,
 | 
			
		||||
                             prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
 | 
			
		||||
                             synced_gpus=synced_gpus,
 | 
			
		||||
                             assistant_model=assistant_model,
 | 
			
		||||
                             streamer=streamer,
 | 
			
		||||
                             **kwargs)
 | 
			
		||||
 | 
			
		||||
GenerationMixin.generate = generate
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.no_grad()
 | 
			
		||||
def pipeline_parallel_generate(self,
 | 
			
		||||
                               inputs: Optional[torch.Tensor] = None,
 | 
			
		||||
                               max_new_tokens: int = 32,
 | 
			
		||||
                               generation_config: Optional[GenerationConfig] = None,
 | 
			
		||||
                               **kwargs):
 | 
			
		||||
    model_kwargs = generation_config.update(**kwargs)
 | 
			
		||||
    inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
 | 
			
		||||
        inputs, generation_config.bos_token_id, model_kwargs
 | 
			
		||||
    )
 | 
			
		||||
    bs = inputs_tensor.shape[0]
 | 
			
		||||
    if model_kwargs.get("attention_mask", None) is None:
 | 
			
		||||
        model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
 | 
			
		||||
            inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id)
 | 
			
		||||
    if self.config.is_encoder_decoder:
 | 
			
		||||
        input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
 | 
			
		||||
            batch_size=bs,
 | 
			
		||||
            model_input_name=model_input_name,
 | 
			
		||||
            model_kwargs=model_kwargs,
 | 
			
		||||
            decoder_start_token_id=generation_config.decoder_start_token_id,
 | 
			
		||||
            bos_token_id=generation_config.bos_token_id,
 | 
			
		||||
            device=inputs_tensor.device,
 | 
			
		||||
        )
 | 
			
		||||
    else:
 | 
			
		||||
        input_ids = inputs_tensor if model_input_name == "input_ids" \
 | 
			
		||||
            else model_kwargs.pop("input_ids")
 | 
			
		||||
 | 
			
		||||
    local_rank = dist.get_rank()
 | 
			
		||||
    pre_rank = (local_rank - 1) % self.pipeline_parallel_stages
 | 
			
		||||
    next_rank = (local_rank + 1) % self.pipeline_parallel_stages
 | 
			
		||||
 | 
			
		||||
    global layer_start
 | 
			
		||||
    global layer_end
 | 
			
		||||
    global num_layers
 | 
			
		||||
 | 
			
		||||
    self.first_token_time = 0
 | 
			
		||||
    self.next_token_time = []
 | 
			
		||||
 | 
			
		||||
    pad_token_id = generation_config.pad_token_id
 | 
			
		||||
    eos_token_id = generation_config.eos_token_id
 | 
			
		||||
    if isinstance(eos_token_id, int):
 | 
			
		||||
        eos_token_id = [eos_token_id]
 | 
			
		||||
    eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) \
 | 
			
		||||
        if eos_token_id is not None else None
 | 
			
		||||
 | 
			
		||||
    _input_ids = None
 | 
			
		||||
    _past_key_values = None
 | 
			
		||||
 | 
			
		||||
    bs = input_ids.shape[0]
 | 
			
		||||
    output_ids = input_ids.clone()
 | 
			
		||||
    os.environ["IPEX_LLM_QUANTIZE_KV_CACHE"] = "0"
 | 
			
		||||
 | 
			
		||||
    step = 0
 | 
			
		||||
    # keep track of which sequences are already finished
 | 
			
		||||
    unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
 | 
			
		||||
    this_peer_finished = False
 | 
			
		||||
    while True:
 | 
			
		||||
        if step >= max_new_tokens:
 | 
			
		||||
            break
 | 
			
		||||
 | 
			
		||||
        if _input_ids is None:
 | 
			
		||||
            _input_ids = input_ids
 | 
			
		||||
 | 
			
		||||
        model_inputs = self.prepare_inputs_for_generation(output_ids, **model_kwargs)
 | 
			
		||||
 | 
			
		||||
        tic = time.time()
 | 
			
		||||
        if local_rank == 0:
 | 
			
		||||
            outputs = self(**model_inputs)
 | 
			
		||||
        else:
 | 
			
		||||
            _inputs_shape = _input_ids.shape + (self.config.hidden_size,)
 | 
			
		||||
            if step == 0 and self.config.model_type == "chatglm" \
 | 
			
		||||
               and hasattr(self.config, "vision_config"):
 | 
			
		||||
                # for glm-4v, image features are mapped during 1st token
 | 
			
		||||
                # 1597 are computed according to computation process of conv
 | 
			
		||||
                _images_feature = 1597 + _input_ids.shape[0] * 2 + _input_ids.shape[1]
 | 
			
		||||
                _inputs_shape = (_input_ids.shape[0], _images_feature, self.config.hidden_size,)
 | 
			
		||||
            inputs_embeds = torch.empty(_inputs_shape,
 | 
			
		||||
                                        device=input_ids.device, dtype=torch.float16)
 | 
			
		||||
            dist.recv(inputs_embeds, src=pre_rank)
 | 
			
		||||
            model_inputs.pop("input_ids")
 | 
			
		||||
            model_inputs["inputs_embeds"] = inputs_embeds
 | 
			
		||||
            outputs = self(**model_inputs)
 | 
			
		||||
 | 
			
		||||
        if local_rank == self.pipeline_parallel_stages - 1:
 | 
			
		||||
            logits = outputs.logits
 | 
			
		||||
            next_ids = torch.argmax(logits[:, -1:, :], dim=-1)
 | 
			
		||||
            dist.broadcast(next_ids, src=local_rank)
 | 
			
		||||
        else:
 | 
			
		||||
            send_data = outputs[0].to(torch.float16)
 | 
			
		||||
            dist.send(send_data, dst=next_rank)
 | 
			
		||||
            next_ids = torch.empty((bs, 1), device=input_ids.device, dtype=torch.int64)
 | 
			
		||||
            dist.broadcast(next_ids, src=self.pipeline_parallel_stages - 1)
 | 
			
		||||
 | 
			
		||||
        _input_ids = next_ids
 | 
			
		||||
        output_ids = torch.cat([output_ids, next_ids], dim=-1)
 | 
			
		||||
 | 
			
		||||
        model_kwargs = self._update_model_kwargs_for_generation(
 | 
			
		||||
            outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        # finished sentences should have their next token be a padding token
 | 
			
		||||
        next_ids = next_ids.squeeze()
 | 
			
		||||
        if eos_token_id is not None:
 | 
			
		||||
            if pad_token_id is None:
 | 
			
		||||
                invalidInputError(False, "If `eos_token_id` is defined, "
 | 
			
		||||
                                         "make sure that `pad_token_id` is defined.")
 | 
			
		||||
            next_ids = next_ids * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
 | 
			
		||||
 | 
			
		||||
        if self.config.model_type == "chatglm" and self.config.num_layers == 40 \
 | 
			
		||||
           and not hasattr(self.config, "vision_config"):
 | 
			
		||||
            # for glm-4-9b-chat
 | 
			
		||||
            if step == 0:
 | 
			
		||||
                value_placeholder = torch.empty_like((outputs.past_key_values)[-1][0])
 | 
			
		||||
                past_key_values_placeholder = tuple(
 | 
			
		||||
                    (value_placeholder, value_placeholder) for _ in range(layer_start)
 | 
			
		||||
                ) + (outputs.past_key_values)[: layer_end - layer_start] + tuple(
 | 
			
		||||
                    (value_placeholder, value_placeholder) for _ in range(layer_end, num_layers)
 | 
			
		||||
                )
 | 
			
		||||
                _past_key_values = past_key_values_placeholder
 | 
			
		||||
            else:
 | 
			
		||||
                _past_key_values = outputs.past_key_values
 | 
			
		||||
        elif self.config.model_type in ["baichuan", "chatglm"] or \
 | 
			
		||||
                (self.config.model_type == "qwen" and hasattr(self.config, "visual")):
 | 
			
		||||
            # for baichuan2, chatglm3, Qwen-VL-Chat, glm-4v-9b
 | 
			
		||||
            if local_rank != 0:
 | 
			
		||||
                value_placeholder = torch.empty_like((outputs.past_key_values)[-1][0])
 | 
			
		||||
                past_key_values_placeholder = tuple(
 | 
			
		||||
                    (value_placeholder, value_placeholder) for _ in range(layer_start)
 | 
			
		||||
                ) + (outputs.past_key_values)[layer_start:]
 | 
			
		||||
                _past_key_values = past_key_values_placeholder
 | 
			
		||||
            else:
 | 
			
		||||
                _past_key_values = outputs.past_key_values
 | 
			
		||||
        else:
 | 
			
		||||
            _past_key_values = outputs.past_key_values
 | 
			
		||||
 | 
			
		||||
        toc = time.time()
 | 
			
		||||
        if step == 0:
 | 
			
		||||
            self.first_token_time = toc - tic
 | 
			
		||||
        else:
 | 
			
		||||
            self.next_token_time.append(toc - tic)
 | 
			
		||||
 | 
			
		||||
        # if eos_token was found in one sentence, set sentence to finished
 | 
			
		||||
        if eos_token_id_tensor is not None:
 | 
			
		||||
            unfinished_sequences = unfinished_sequences.mul(
 | 
			
		||||
                next_ids.tile(eos_token_id_tensor.shape[0], 1)
 | 
			
		||||
                .ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
 | 
			
		||||
            )
 | 
			
		||||
            # stop when each sentence is finished
 | 
			
		||||
            if unfinished_sequences.max() == 0:
 | 
			
		||||
                this_peer_finished = True
 | 
			
		||||
        if this_peer_finished:
 | 
			
		||||
            break
 | 
			
		||||
 | 
			
		||||
        step += 1
 | 
			
		||||
        if self.device.type == 'xpu':
 | 
			
		||||
            torch.xpu.synchronize()
 | 
			
		||||
    self.rest_cost_mean = np.mean(self.next_token_time)
 | 
			
		||||
    return output_ids
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def llama_causallm_forward_4_37_lowmem(
 | 
			
		||||
    self,
 | 
			
		||||
    input_ids: torch.LongTensor = None,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_values: Optional[List[torch.FloatTensor]] = None,
 | 
			
		||||
    inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
			
		||||
    labels: Optional[torch.LongTensor] = None,
 | 
			
		||||
    use_cache: Optional[bool] = None,
 | 
			
		||||
    output_attentions: Optional[bool] = None,
 | 
			
		||||
    output_hidden_states: Optional[bool] = None,
 | 
			
		||||
    return_dict: Optional[bool] = None,
 | 
			
		||||
) -> Union[Tuple, CausalLMOutputWithPast]:
 | 
			
		||||
 | 
			
		||||
    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions  # noqa
 | 
			
		||||
    output_hidden_states = (
 | 
			
		||||
        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states  # noqa
 | 
			
		||||
    )
 | 
			
		||||
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
 | 
			
		||||
 | 
			
		||||
    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
 | 
			
		||||
    outputs = self.model(
 | 
			
		||||
        input_ids=input_ids,
 | 
			
		||||
        attention_mask=attention_mask,
 | 
			
		||||
        position_ids=position_ids,
 | 
			
		||||
        past_key_values=past_key_values,
 | 
			
		||||
        inputs_embeds=inputs_embeds,
 | 
			
		||||
        use_cache=use_cache,
 | 
			
		||||
        output_attentions=output_attentions,
 | 
			
		||||
        output_hidden_states=output_hidden_states,
 | 
			
		||||
        return_dict=return_dict,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    hidden_states = outputs[0]
 | 
			
		||||
 | 
			
		||||
    # ipex-llm change starts
 | 
			
		||||
 | 
			
		||||
    device = hidden_states.device
 | 
			
		||||
 | 
			
		||||
    if self.config.pretraining_tp > 1:
 | 
			
		||||
        lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)  # noqa
 | 
			
		||||
        logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]  # noqa
 | 
			
		||||
        logits = torch.cat(logits, dim=-1)
 | 
			
		||||
    else:
 | 
			
		||||
        if device.type == "xpu":
 | 
			
		||||
            torch.xpu.empty_cache()
 | 
			
		||||
        logits = self.lm_head(hidden_states)
 | 
			
		||||
        if device.type == "xpu":
 | 
			
		||||
            torch.xpu.empty_cache()
 | 
			
		||||
    # logits = logits.float()
 | 
			
		||||
 | 
			
		||||
    # ipex-llm change ends
 | 
			
		||||
 | 
			
		||||
    loss = None
 | 
			
		||||
    if labels is not None:
 | 
			
		||||
        # Shift so that tokens < n predict n
 | 
			
		||||
        shift_logits = logits[..., :-1, :].contiguous()
 | 
			
		||||
        shift_labels = labels[..., 1:].contiguous()
 | 
			
		||||
        # Flatten the tokens
 | 
			
		||||
        loss_fct = CrossEntropyLoss()
 | 
			
		||||
        shift_logits = shift_logits.view(-1, self.config.vocab_size)
 | 
			
		||||
        shift_labels = shift_labels.view(-1)
 | 
			
		||||
        # Enable model parallelism
 | 
			
		||||
        shift_labels = shift_labels.to(shift_logits.device)
 | 
			
		||||
        loss = loss_fct(shift_logits, shift_labels)
 | 
			
		||||
 | 
			
		||||
    if not return_dict:
 | 
			
		||||
        output = (logits,) + outputs[1:]
 | 
			
		||||
        return (loss,) + output if loss is not None else output
 | 
			
		||||
 | 
			
		||||
    return CausalLMOutputWithPast(
 | 
			
		||||
        loss=loss,
 | 
			
		||||
        logits=logits,
 | 
			
		||||
        past_key_values=outputs.past_key_values,
 | 
			
		||||
        hidden_states=outputs.hidden_states,
 | 
			
		||||
        attentions=outputs.attentions,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def chatglm3_conditional_generation_forward_lowmem(
 | 
			
		||||
    self,
 | 
			
		||||
    input_ids: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.Tensor] = None,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
 | 
			
		||||
    inputs_embeds: Optional[torch.Tensor] = None,
 | 
			
		||||
    labels: Optional[torch.Tensor] = None,
 | 
			
		||||
    use_cache: Optional[bool] = None,
 | 
			
		||||
    output_attentions: Optional[bool] = None,
 | 
			
		||||
    output_hidden_states: Optional[bool] = None,
 | 
			
		||||
    return_dict: Optional[bool] = None,
 | 
			
		||||
    return_last_logit: Optional[bool] = False,
 | 
			
		||||
):
 | 
			
		||||
    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
			
		||||
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
 | 
			
		||||
 | 
			
		||||
    transformer_outputs = self.transformer(
 | 
			
		||||
        input_ids=input_ids,
 | 
			
		||||
        position_ids=position_ids,
 | 
			
		||||
        attention_mask=attention_mask,
 | 
			
		||||
        past_key_values=past_key_values,
 | 
			
		||||
        inputs_embeds=inputs_embeds,
 | 
			
		||||
        use_cache=use_cache,
 | 
			
		||||
        output_hidden_states=output_hidden_states,
 | 
			
		||||
        return_dict=return_dict,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    hidden_states = transformer_outputs[0]
 | 
			
		||||
    if return_last_logit:
 | 
			
		||||
        hidden_states = hidden_states[-1:]
 | 
			
		||||
 | 
			
		||||
    device = hidden_states.device
 | 
			
		||||
    # ipex-llm change starts
 | 
			
		||||
    if device.type == "xpu":
 | 
			
		||||
        torch.xpu.empty_cache()
 | 
			
		||||
    lm_logits = self.transformer.output_layer(hidden_states)
 | 
			
		||||
    if device.type == "xpu":
 | 
			
		||||
        torch.xpu.empty_cache()
 | 
			
		||||
    lm_logits = lm_logits.transpose(0, 1).contiguous()
 | 
			
		||||
 | 
			
		||||
    loss = None
 | 
			
		||||
    if labels is not None:
 | 
			
		||||
        # lm_logits = lm_logits.to(torch.float32)
 | 
			
		||||
 | 
			
		||||
        # Shift so that tokens < n predict n
 | 
			
		||||
        shift_logits = lm_logits[..., :-1, :].contiguous()
 | 
			
		||||
        shift_labels = labels[..., 1:].contiguous()
 | 
			
		||||
        # Flatten the tokens
 | 
			
		||||
        loss_fct = CrossEntropyLoss(ignore_index=-100)
 | 
			
		||||
        loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
 | 
			
		||||
 | 
			
		||||
        lm_logits = lm_logits.to(hidden_states.dtype)
 | 
			
		||||
        loss = loss.to(hidden_states.dtype)
 | 
			
		||||
    # ipex-llm change ends
 | 
			
		||||
 | 
			
		||||
    if not return_dict:
 | 
			
		||||
        output = (lm_logits,) + transformer_outputs[1:]
 | 
			
		||||
        return ((loss,) + output) if loss is not None else output
 | 
			
		||||
 | 
			
		||||
    return CausalLMOutputWithPast(
 | 
			
		||||
        loss=loss,
 | 
			
		||||
        logits=lm_logits,
 | 
			
		||||
        past_key_values=transformer_outputs.past_key_values,
 | 
			
		||||
        hidden_states=transformer_outputs.hidden_states,
 | 
			
		||||
        attentions=transformer_outputs.attentions,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def glm4_conditional_generation_forward_lowmem(
 | 
			
		||||
    self,
 | 
			
		||||
    input_ids: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.Tensor] = None,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
 | 
			
		||||
    inputs_embeds: Optional[torch.Tensor] = None,
 | 
			
		||||
    labels: Optional[torch.Tensor] = None,
 | 
			
		||||
    use_cache: Optional[bool] = None,
 | 
			
		||||
    output_attentions: Optional[bool] = None,
 | 
			
		||||
    output_hidden_states: Optional[bool] = None,
 | 
			
		||||
    return_dict: Optional[bool] = None,
 | 
			
		||||
    return_last_logit: Optional[bool] = False,
 | 
			
		||||
):
 | 
			
		||||
    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
			
		||||
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
 | 
			
		||||
 | 
			
		||||
    transformer_outputs = self.transformer(
 | 
			
		||||
        input_ids=input_ids,
 | 
			
		||||
        position_ids=position_ids,
 | 
			
		||||
        attention_mask=attention_mask,
 | 
			
		||||
        past_key_values=past_key_values,
 | 
			
		||||
        inputs_embeds=inputs_embeds,
 | 
			
		||||
        use_cache=use_cache,
 | 
			
		||||
        output_hidden_states=output_hidden_states,
 | 
			
		||||
        return_dict=return_dict,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    hidden_states = transformer_outputs[0]
 | 
			
		||||
    if return_last_logit:
 | 
			
		||||
        hidden_states = hidden_states[:, -1:]
 | 
			
		||||
 | 
			
		||||
    device = hidden_states.device
 | 
			
		||||
    # ipex-llm change starts
 | 
			
		||||
    if device.type == "xpu":
 | 
			
		||||
        torch.xpu.empty_cache()
 | 
			
		||||
    lm_logits = self.transformer.output_layer(hidden_states)
 | 
			
		||||
    if device.type == "xpu":
 | 
			
		||||
        torch.xpu.empty_cache()
 | 
			
		||||
 | 
			
		||||
    loss = None
 | 
			
		||||
    if labels is not None:
 | 
			
		||||
        # lm_logits = lm_logits.to(torch.float32)
 | 
			
		||||
 | 
			
		||||
        # Shift so that tokens < n predict n
 | 
			
		||||
        shift_logits = lm_logits[..., :-1, :].contiguous()
 | 
			
		||||
        shift_labels = labels[..., 1:].contiguous()
 | 
			
		||||
        # Flatten the tokens
 | 
			
		||||
        loss_fct = CrossEntropyLoss(ignore_index=-100)
 | 
			
		||||
        loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
 | 
			
		||||
 | 
			
		||||
        lm_logits = lm_logits.to(hidden_states.dtype)
 | 
			
		||||
        loss = loss.to(hidden_states.dtype)
 | 
			
		||||
    # ipex-llm change ends
 | 
			
		||||
 | 
			
		||||
    if not return_dict:
 | 
			
		||||
        output = (lm_logits,) + transformer_outputs[1:]
 | 
			
		||||
        return ((loss,) + output) if loss is not None else output
 | 
			
		||||
 | 
			
		||||
    return CausalLMOutputWithPast(
 | 
			
		||||
        loss=loss,
 | 
			
		||||
        logits=lm_logits,
 | 
			
		||||
        past_key_values=transformer_outputs.past_key_values,
 | 
			
		||||
        hidden_states=transformer_outputs.hidden_states,
 | 
			
		||||
        attentions=transformer_outputs.attentions,
 | 
			
		||||
    )
 | 
			
		||||
		Loading…
	
		Reference in a new issue