Support MiniCPM-V-2_6 multi-modal benchmarking with latency text streamer (#11963)

* Support MiniCPM-V-2_6 multi-modal benchmarking with latency text streamer

* Style fixes
This commit is contained in:
Yuwen Hu 2024-08-29 19:22:09 +08:00 committed by GitHub
parent 2e49e1f8e9
commit a9e485eb1b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 51 additions and 1 deletions

View file

@ -1997,6 +1997,11 @@ def _optimize_post(model, lightweight_bmm=False):
resampler_module_name = model.resampler.__class__.__module__
resampler_module = importlib.import_module(resampler_module_name)
resampler_module._in_projection_packed = _in_projection_packed
# for minicpm-v-2_6 benchmarking purposes
from ipex_llm.transformers.models.minicpmv import minicpmv_decode_stream_wrapper
minicpmv_decode_stream = minicpmv_decode_stream_wrapper(module.MiniCPMV._decode_stream)
model._decode_stream = MethodType(minicpmv_decode_stream, model)
elif model.vpm.config.model_type == "idefics2":
# MiniCPM-V 2.5
from ipex_llm.transformers.models.minicpmv import siglip_attention_forward

View file

@ -13,15 +13,22 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://huggingface.co/openbmb/MiniCPM-V-2_6/blob/main/modeling_minicpmv.py
# which is licensed under Apache License 2.0:
#
# https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE
#
import math
import torch
from threading import Thread
from typing import Optional, List
from torch.nn.functional import linear
from ipex_llm.transformers.models.common import merge_qkv_base
from ipex_llm.transformers.models.common import attention_softmax
from transformers import AutoProcessor
from transformers import AutoProcessor, TextIteratorStreamer
from transformers.generation.logits_process import RepetitionPenaltyLogitsProcessor
@ -111,6 +118,38 @@ def _in_projection_packed(
return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
# for minicpm-v-2_6 benchmarking purposes
def minicpmv_decode_stream_wrapper(origin_decode_stream):
def minicpv_decode_stream(
self,
inputs_embeds,
tokenizer,
**kwargs
):
streamer = kwargs.get('streamer', None)
if streamer is not None:
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
generation_kwargs = {
'inputs_embeds': inputs_embeds,
'pad_token_id': 0,
'eos_token_id': terminators,
}
generation_kwargs.update(kwargs)
thread = Thread(target=self.llm.generate, kwargs=generation_kwargs)
thread.start()
return streamer
else:
return origin_decode_stream(
self=self,
inputs_embeds=inputs_embeds,
tokenizer=tokenizer,
**kwargs
)
return minicpv_decode_stream
# MiniCPM-V-2
# modified from timm.models.vision_transformer.Attention.forward
def vision_transformer_attention_forward(self, x: torch.Tensor) -> torch.Tensor:
@ -209,6 +248,12 @@ def minicpmv_generate_wrapper(origin_generate):
**kwargs
):
RepetitionPenaltyLogitsProcessor.__call__ = patched_repetition_penalty_call
# for minicpm-v-2_6 benchmarking purposes
stream = kwargs.get("stream", False)
if isinstance(stream, TextIteratorStreamer):
kwargs.update({'streamer': stream})
return origin_generate(
*inputs,
**kwargs,