Support MiniCPM-V-2_6 multi-modal benchmarking with latency text streamer (#11963)
* Support MiniCPM-V-2_6 multi-modal benchmarking with latency text streamer * Style fixes
This commit is contained in:
		
							parent
							
								
									2e49e1f8e9
								
							
						
					
					
						commit
						a9e485eb1b
					
				
					 2 changed files with 51 additions and 1 deletions
				
			
		| 
						 | 
				
			
			@ -1997,6 +1997,11 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
			
		|||
            resampler_module_name = model.resampler.__class__.__module__
 | 
			
		||||
            resampler_module = importlib.import_module(resampler_module_name)
 | 
			
		||||
            resampler_module._in_projection_packed = _in_projection_packed
 | 
			
		||||
 | 
			
		||||
            # for minicpm-v-2_6 benchmarking purposes
 | 
			
		||||
            from ipex_llm.transformers.models.minicpmv import minicpmv_decode_stream_wrapper
 | 
			
		||||
            minicpmv_decode_stream = minicpmv_decode_stream_wrapper(module.MiniCPMV._decode_stream)
 | 
			
		||||
            model._decode_stream = MethodType(minicpmv_decode_stream, model)
 | 
			
		||||
        elif model.vpm.config.model_type == "idefics2":
 | 
			
		||||
            # MiniCPM-V 2.5
 | 
			
		||||
            from ipex_llm.transformers.models.minicpmv import siglip_attention_forward
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -13,15 +13,22 @@
 | 
			
		|||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
# Some parts of this file is adapted from
 | 
			
		||||
# https://huggingface.co/openbmb/MiniCPM-V-2_6/blob/main/modeling_minicpmv.py
 | 
			
		||||
# which is licensed under Apache License 2.0:
 | 
			
		||||
#
 | 
			
		||||
# https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
import math
 | 
			
		||||
import torch
 | 
			
		||||
from threading import Thread
 | 
			
		||||
from typing import Optional, List
 | 
			
		||||
from torch.nn.functional import linear
 | 
			
		||||
from ipex_llm.transformers.models.common import merge_qkv_base
 | 
			
		||||
from ipex_llm.transformers.models.common import attention_softmax
 | 
			
		||||
from transformers import AutoProcessor
 | 
			
		||||
from transformers import AutoProcessor, TextIteratorStreamer
 | 
			
		||||
from transformers.generation.logits_process import RepetitionPenaltyLogitsProcessor
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -111,6 +118,38 @@ def _in_projection_packed(
 | 
			
		|||
        return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# for minicpm-v-2_6 benchmarking purposes
 | 
			
		||||
def minicpmv_decode_stream_wrapper(origin_decode_stream):
 | 
			
		||||
    def minicpv_decode_stream(
 | 
			
		||||
        self,
 | 
			
		||||
        inputs_embeds,
 | 
			
		||||
        tokenizer,
 | 
			
		||||
        **kwargs
 | 
			
		||||
    ):
 | 
			
		||||
        streamer = kwargs.get('streamer', None)
 | 
			
		||||
        if streamer is not None:
 | 
			
		||||
            terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
 | 
			
		||||
            generation_kwargs = {
 | 
			
		||||
                'inputs_embeds': inputs_embeds,
 | 
			
		||||
                'pad_token_id': 0,
 | 
			
		||||
                'eos_token_id': terminators,
 | 
			
		||||
            }
 | 
			
		||||
            generation_kwargs.update(kwargs)
 | 
			
		||||
 | 
			
		||||
            thread = Thread(target=self.llm.generate, kwargs=generation_kwargs)
 | 
			
		||||
            thread.start()
 | 
			
		||||
 | 
			
		||||
            return streamer
 | 
			
		||||
        else:
 | 
			
		||||
            return origin_decode_stream(
 | 
			
		||||
                self=self,
 | 
			
		||||
                inputs_embeds=inputs_embeds,
 | 
			
		||||
                tokenizer=tokenizer,
 | 
			
		||||
                **kwargs
 | 
			
		||||
            )
 | 
			
		||||
    return minicpv_decode_stream
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# MiniCPM-V-2
 | 
			
		||||
# modified from timm.models.vision_transformer.Attention.forward
 | 
			
		||||
def vision_transformer_attention_forward(self, x: torch.Tensor) -> torch.Tensor:
 | 
			
		||||
| 
						 | 
				
			
			@ -209,6 +248,12 @@ def minicpmv_generate_wrapper(origin_generate):
 | 
			
		|||
        **kwargs
 | 
			
		||||
    ):
 | 
			
		||||
        RepetitionPenaltyLogitsProcessor.__call__ = patched_repetition_penalty_call
 | 
			
		||||
 | 
			
		||||
        # for minicpm-v-2_6 benchmarking purposes
 | 
			
		||||
        stream = kwargs.get("stream", False)
 | 
			
		||||
        if isinstance(stream, TextIteratorStreamer):
 | 
			
		||||
            kwargs.update({'streamer': stream})
 | 
			
		||||
 | 
			
		||||
        return origin_generate(
 | 
			
		||||
            *inputs,
 | 
			
		||||
            **kwargs,
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue