remove obselete npu code (#11967)
This commit is contained in:
parent
a9e485eb1b
commit
fbf088f61e
3 changed files with 5 additions and 780 deletions
|
|
@ -81,21 +81,16 @@ def optimize_llm(model: torch.nn.Module):
|
||||||
from ipex_llm.transformers.npu_models.llama import merge_qkv
|
from ipex_llm.transformers.npu_models.llama import merge_qkv
|
||||||
from ipex_llm.transformers.npu_models.llama import merge_mlp
|
from ipex_llm.transformers.npu_models.llama import merge_mlp
|
||||||
from ipex_llm.transformers.npu_models.llama import llama_model_forward
|
from ipex_llm.transformers.npu_models.llama import llama_model_forward
|
||||||
from ipex_llm.transformers.npu_models.llama import llama_fused_model_forward
|
|
||||||
from ipex_llm.transformers.npu_models.llama import llama_attention_forward
|
from ipex_llm.transformers.npu_models.llama import llama_attention_forward
|
||||||
from ipex_llm.transformers.npu_models.llama import llama_mlp_forward
|
from ipex_llm.transformers.npu_models.llama import llama_mlp_forward
|
||||||
from transformers.models.llama.modeling_llama import LlamaModel
|
from transformers.models.llama.modeling_llama import LlamaModel
|
||||||
from transformers.models.llama.modeling_llama import LlamaAttention
|
from transformers.models.llama.modeling_llama import LlamaAttention
|
||||||
from transformers.models.llama.modeling_llama import LlamaMLP
|
from transformers.models.llama.modeling_llama import LlamaMLP
|
||||||
if hasattr(model, 'pipeline_parallel_stages'):
|
model.apply(merge_qkv)
|
||||||
# experimental support for fused decoderlayer implementation
|
model.apply(merge_mlp)
|
||||||
convert_forward(model, LlamaModel, llama_fused_model_forward)
|
convert_forward(model, LlamaModel, llama_model_forward)
|
||||||
else:
|
convert_forward(model, LlamaAttention, llama_attention_forward)
|
||||||
model.apply(merge_qkv)
|
convert_forward(model, LlamaMLP, llama_mlp_forward)
|
||||||
model.apply(merge_mlp)
|
|
||||||
convert_forward(model, LlamaModel, llama_model_forward)
|
|
||||||
convert_forward(model, LlamaAttention, llama_attention_forward)
|
|
||||||
convert_forward(model, LlamaMLP, llama_mlp_forward)
|
|
||||||
|
|
||||||
elif model.config.model_type == "mistral":
|
elif model.config.model_type == "mistral":
|
||||||
from ipex_llm.transformers.npu_models.mistral import merge_qkv
|
from ipex_llm.transformers.npu_models.mistral import merge_qkv
|
||||||
|
|
|
||||||
|
|
@ -182,137 +182,6 @@ def llama_model_forward(
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def llama_fused_model_forward(
|
|
||||||
self,
|
|
||||||
input_ids: torch.LongTensor = None,
|
|
||||||
attention_mask: Optional[torch.Tensor] = None,
|
|
||||||
position_ids: Optional[torch.LongTensor] = None,
|
|
||||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
||||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
||||||
use_cache: Optional[bool] = None,
|
|
||||||
output_attentions: Optional[bool] = None,
|
|
||||||
output_hidden_states: Optional[bool] = None,
|
|
||||||
return_dict: Optional[bool] = None,
|
|
||||||
cache_position: Optional[torch.LongTensor] = None,
|
|
||||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
||||||
output_attentions = (
|
|
||||||
output_attentions if output_attentions is not None
|
|
||||||
else self.config.output_attentions
|
|
||||||
)
|
|
||||||
output_hidden_states = (
|
|
||||||
output_hidden_states if output_hidden_states is not None
|
|
||||||
else self.config.output_hidden_states
|
|
||||||
)
|
|
||||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
||||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
||||||
|
|
||||||
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
||||||
invalidInputError(False,
|
|
||||||
("You cannot specify both input_ids and inputs_embeds at the same time, "
|
|
||||||
"and must specify either one"))
|
|
||||||
|
|
||||||
if self.gradient_checkpointing and self.training and use_cache:
|
|
||||||
use_cache = False
|
|
||||||
|
|
||||||
if inputs_embeds is None:
|
|
||||||
inputs_embeds = self.embed_tokens(input_ids)
|
|
||||||
|
|
||||||
past_seen_tokens = 0
|
|
||||||
|
|
||||||
# ipex-llm changes start
|
|
||||||
from ipex_llm.transformers.npu_models.kv import DynamicFusedNormalCache
|
|
||||||
if use_cache and not isinstance(past_key_values, DynamicFusedNormalCache):
|
|
||||||
past_key_values = DynamicFusedNormalCache.from_legacy_cache(past_key_values)
|
|
||||||
past_seen_tokens = past_key_values.get_seq_length()
|
|
||||||
|
|
||||||
if cache_position is None:
|
|
||||||
cache_position = torch.arange(past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1],
|
|
||||||
device=inputs_embeds.device)
|
|
||||||
# ipex-llm changes end
|
|
||||||
|
|
||||||
if position_ids is None:
|
|
||||||
position_ids = cache_position.unsqueeze(0)
|
|
||||||
|
|
||||||
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds,
|
|
||||||
cache_position, past_seen_tokens)
|
|
||||||
|
|
||||||
# embed positions
|
|
||||||
hidden_states = inputs_embeds
|
|
||||||
|
|
||||||
# decoder layers
|
|
||||||
all_hidden_states = () if output_hidden_states else None
|
|
||||||
all_self_attns = () if output_attentions else None
|
|
||||||
next_decoder_cache = None
|
|
||||||
|
|
||||||
seq_len = hidden_states.size(1)
|
|
||||||
|
|
||||||
if seq_len == 1:
|
|
||||||
# multi_decoder = self.layers[(self.layer_end + 1) % num_layers]
|
|
||||||
layer_outputs = self.multi_decoder(hidden_states,
|
|
||||||
attention_mask=causal_mask,
|
|
||||||
position_ids=position_ids,
|
|
||||||
past_key_value=past_key_values,
|
|
||||||
output_attentions=output_attentions,
|
|
||||||
use_cache=use_cache,
|
|
||||||
cache_position=cache_position,)
|
|
||||||
hidden_states = layer_outputs[0]
|
|
||||||
|
|
||||||
next_decoder_cache = layer_outputs[1]
|
|
||||||
else:
|
|
||||||
for decoder_layer in self.layers:
|
|
||||||
if output_hidden_states:
|
|
||||||
all_hidden_states += (hidden_states,)
|
|
||||||
|
|
||||||
if self.gradient_checkpointing and self.training:
|
|
||||||
layer_outputs = self._gradient_checkpointing_func(
|
|
||||||
decoder_layer.__call__,
|
|
||||||
hidden_states,
|
|
||||||
causal_mask,
|
|
||||||
position_ids,
|
|
||||||
past_key_values,
|
|
||||||
output_attentions,
|
|
||||||
use_cache,
|
|
||||||
cache_position,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
layer_outputs = decoder_layer(
|
|
||||||
hidden_states,
|
|
||||||
attention_mask=causal_mask,
|
|
||||||
position_ids=position_ids,
|
|
||||||
past_key_value=past_key_values,
|
|
||||||
output_attentions=output_attentions,
|
|
||||||
use_cache=use_cache,
|
|
||||||
cache_position=cache_position,
|
|
||||||
)
|
|
||||||
|
|
||||||
hidden_states = layer_outputs[0]
|
|
||||||
|
|
||||||
if use_cache:
|
|
||||||
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
|
||||||
|
|
||||||
if output_attentions:
|
|
||||||
all_self_attns += (layer_outputs[1],)
|
|
||||||
|
|
||||||
hidden_states = self.norm(hidden_states)
|
|
||||||
|
|
||||||
# add hidden states from the last decoder layer
|
|
||||||
if output_hidden_states:
|
|
||||||
all_hidden_states += (hidden_states,)
|
|
||||||
|
|
||||||
# ipex-llm changes start
|
|
||||||
next_cache = next_decoder_cache if use_cache else None
|
|
||||||
# ipex-llm changes end
|
|
||||||
if not return_dict:
|
|
||||||
return tuple(v for v in [hidden_states, next_cache,
|
|
||||||
all_hidden_states, all_self_attns] if v is not None)
|
|
||||||
return BaseModelOutputWithPast(
|
|
||||||
last_hidden_state=hidden_states,
|
|
||||||
past_key_values=next_cache,
|
|
||||||
hidden_states=all_hidden_states,
|
|
||||||
attentions=all_self_attns,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def llama_attention_forward(
|
def llama_attention_forward(
|
||||||
self,
|
self,
|
||||||
hidden_states: torch.Tensor,
|
hidden_states: torch.Tensor,
|
||||||
|
|
|
||||||
|
|
@ -1,639 +0,0 @@
|
||||||
#
|
|
||||||
# Copyright 2016 The BigDL Authors.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
#
|
|
||||||
# Some parts of this file is adapted from
|
|
||||||
# https://github.com/huggingface/transformers/blob/main/src/transformers/generation/utils.py
|
|
||||||
#
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from torch import nn
|
|
||||||
from torch.nn import CrossEntropyLoss
|
|
||||||
import torch.nn.functional as F
|
|
||||||
import torch.distributed as dist
|
|
||||||
import os
|
|
||||||
import time
|
|
||||||
import numpy as np
|
|
||||||
from typing import Callable, List, Optional, Union, Tuple
|
|
||||||
from types import SimpleNamespace
|
|
||||||
import transformers
|
|
||||||
from transformers import GenerationConfig, LogitsProcessorList, StoppingCriteriaList
|
|
||||||
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
|
||||||
from ipex_llm.utils.common import invalidInputError
|
|
||||||
from ipex_llm.ggml.quantize import ggml_tensor_qtype
|
|
||||||
import logging
|
|
||||||
logger = logging.getLogger(__name__)
|
|
||||||
|
|
||||||
# patch GenerationMixin.generate
|
|
||||||
from transformers import GenerationMixin
|
|
||||||
original_generate = GenerationMixin.generate
|
|
||||||
|
|
||||||
|
|
||||||
class DummyLayer(nn.Module):
|
|
||||||
def __init__(self, *args):
|
|
||||||
super().__init__()
|
|
||||||
# to avoid AttributeError in https://github.com/intel-analytics/ipex-llm/blob/main/
|
|
||||||
# python/llm/src/ipex_llm/transformers/models/llama.py#L2076
|
|
||||||
self.weight = nn.Parameter(torch.empty(0,), requires_grad=False)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class Dummy_MLPLayer(nn.Module):
|
|
||||||
def __init__(self, *args):
|
|
||||||
super().__init__()
|
|
||||||
# to avoid AttributeError in https://github.com/intel-analytics/ipex-llm/blob/main/
|
|
||||||
# python/llm/src/ipex_llm/transformers/models/llama.py#L119
|
|
||||||
self.up_proj = DummyLayer()
|
|
||||||
self.down_proj = DummyLayer()
|
|
||||||
self.shared_expert = SimpleNamespace()
|
|
||||||
self.shared_expert.up_proj = DummyLayer()
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class Dummy_DecoderLayer(nn.Module):
|
|
||||||
def __init__(self, *args):
|
|
||||||
super().__init__()
|
|
||||||
# to avoid AttributeError
|
|
||||||
self.input_layernorm = DummyLayer()
|
|
||||||
self.mlp = Dummy_MLPLayer()
|
|
||||||
|
|
||||||
def forward(self, hidden_states, *args, **kwargs):
|
|
||||||
past_key_value = kwargs.get('past_key_value', None)
|
|
||||||
use_cache = kwargs.get('use_cache', False)
|
|
||||||
outputs = (hidden_states,)
|
|
||||||
if use_cache:
|
|
||||||
outputs += (past_key_value,)
|
|
||||||
return outputs
|
|
||||||
|
|
||||||
|
|
||||||
class Dummy_GLMBlock(nn.Module):
|
|
||||||
def __init__(self, *args):
|
|
||||||
super().__init__()
|
|
||||||
# to avoid AttributeError
|
|
||||||
self.input_layernorm = DummyLayer()
|
|
||||||
self.mlp = Dummy_MLPLayer()
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
|
|
||||||
):
|
|
||||||
if kv_cache is None:
|
|
||||||
return hidden_states, ()
|
|
||||||
return hidden_states, kv_cache
|
|
||||||
|
|
||||||
|
|
||||||
def init_pipeline_parallel():
|
|
||||||
import oneccl_bindings_for_pytorch
|
|
||||||
os.environ["MASTER_ADDR"] = os.environ.get("MASTER_ADDR", "127.0.0.1")
|
|
||||||
os.environ["MASTER_PORT"] = os.environ.get("MASTER_PORT", "29500")
|
|
||||||
dist.init_process_group('ccl')
|
|
||||||
|
|
||||||
|
|
||||||
def low_mem_convert(model):
|
|
||||||
from ipex_llm.transformers.convert import convert_forward
|
|
||||||
import importlib
|
|
||||||
if 'llama' in model.config.model_type:
|
|
||||||
convert_forward(
|
|
||||||
model,
|
|
||||||
transformers.models.llama.modeling_llama.LlamaForCausalLM,
|
|
||||||
llama_causallm_forward_4_37_lowmem)
|
|
||||||
elif model.config.model_type == "chatglm" and not hasattr(model.config, "vision_config"):
|
|
||||||
if model.config.num_layers == 40:
|
|
||||||
# for glm4-9b
|
|
||||||
modeling_module_name = model.__class__.__module__
|
|
||||||
module = importlib.import_module(modeling_module_name)
|
|
||||||
convert_forward(
|
|
||||||
model,
|
|
||||||
module.ChatGLMForConditionalGeneration,
|
|
||||||
glm4_conditional_generation_forward_lowmem)
|
|
||||||
else:
|
|
||||||
# for chatglm3-6b
|
|
||||||
modeling_module_name = model.__class__.__module__
|
|
||||||
module = importlib.import_module(modeling_module_name)
|
|
||||||
convert_forward(
|
|
||||||
model,
|
|
||||||
module.ChatGLMForConditionalGeneration,
|
|
||||||
chatglm3_conditional_generation_forward_lowmem)
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
def pipeline_parallel(model, pipeline_parallel_stages, torch_dtype=torch.float32, device=None):
|
|
||||||
global num_layers
|
|
||||||
if hasattr(model.config, 'num_hidden_layers'):
|
|
||||||
num_layers = model.config.num_hidden_layers
|
|
||||||
elif hasattr(model.config, 'num_layers'):
|
|
||||||
# for chatglm3-6b
|
|
||||||
num_layers = model.config.num_layers
|
|
||||||
|
|
||||||
slice_size = (num_layers + pipeline_parallel_stages - 1) // pipeline_parallel_stages
|
|
||||||
|
|
||||||
local_rank = dist.get_rank()
|
|
||||||
|
|
||||||
global layer_start
|
|
||||||
global layer_end
|
|
||||||
layer_start = slice_size * local_rank
|
|
||||||
layer_end = layer_start + min(slice_size, num_layers - layer_start)
|
|
||||||
|
|
||||||
if model.config.model_type == "qwen" and hasattr(model.config, "visual"):
|
|
||||||
# for Qwen-VL-Chat
|
|
||||||
for i in range(num_layers):
|
|
||||||
if i < layer_start or i >= layer_end:
|
|
||||||
model._modules['transformer'].h[i] = Dummy_DecoderLayer()
|
|
||||||
if local_rank != 0:
|
|
||||||
model._modules['transformer'].wte = DummyLayer()
|
|
||||||
model._modules['transformer'].drop = DummyLayer()
|
|
||||||
if local_rank != pipeline_parallel_stages - 1:
|
|
||||||
model._modules['transformer'].ln_f = DummyLayer()
|
|
||||||
model._modules['ln_f'] = DummyLayer()
|
|
||||||
model._modules['lm_head'] = DummyLayer()
|
|
||||||
elif model.config.model_type == "chatglm":
|
|
||||||
# for chatglm3-6b, glm-4-9b-chat
|
|
||||||
for i in range(num_layers):
|
|
||||||
if i < layer_start or i >= layer_end:
|
|
||||||
model._modules['transformer'].encoder.layers[i] = Dummy_GLMBlock()
|
|
||||||
else:
|
|
||||||
model._modules['transformer'].encoder.layers[i].self_attention.num_layers = \
|
|
||||||
i - layer_start
|
|
||||||
|
|
||||||
if local_rank != 0:
|
|
||||||
model._modules['transformer'].embedding = DummyLayer()
|
|
||||||
if local_rank != pipeline_parallel_stages - 1:
|
|
||||||
model._modules['transformer'].encoder.final_layernorm = DummyLayer()
|
|
||||||
model._modules['transformer'].output_layer = DummyLayer()
|
|
||||||
else:
|
|
||||||
for i in range(num_layers):
|
|
||||||
if i < layer_start or i >= layer_end:
|
|
||||||
model._modules['model'].layers[i] = Dummy_DecoderLayer()
|
|
||||||
else:
|
|
||||||
model._modules['model'].layers[i].self_attn.layer_idx = i - layer_start
|
|
||||||
|
|
||||||
if local_rank != 0:
|
|
||||||
model._modules['model'].embed_tokens = DummyLayer()
|
|
||||||
if local_rank != pipeline_parallel_stages - 1:
|
|
||||||
model._modules['model'].norm = DummyLayer()
|
|
||||||
model._modules['lm_head'] = DummyLayer()
|
|
||||||
|
|
||||||
_enable_lowmem = os.getenv('IPEX_LLM_LOW_MEM')
|
|
||||||
_enable_lowmem = (_enable_lowmem is not None) and (_enable_lowmem.lower() == "1")
|
|
||||||
if _enable_lowmem:
|
|
||||||
model = low_mem_convert(model)
|
|
||||||
|
|
||||||
model.pipeline_parallel_stages = pipeline_parallel_stages
|
|
||||||
model.layer_start = layer_start
|
|
||||||
model.layer_end = layer_end
|
|
||||||
model.num_layers = num_layers
|
|
||||||
if torch_dtype == torch.float16:
|
|
||||||
model = model.half()
|
|
||||||
if device is None:
|
|
||||||
model = model.to(f'xpu:{local_rank}')
|
|
||||||
else:
|
|
||||||
model.to(device)
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def generate(
|
|
||||||
self,
|
|
||||||
inputs: Optional[torch.Tensor] = None,
|
|
||||||
generation_config: Optional[GenerationConfig] = None,
|
|
||||||
logits_processor: Optional[LogitsProcessorList] = None,
|
|
||||||
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
|
||||||
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]]=None,
|
|
||||||
synced_gpus: Optional[bool] = None,
|
|
||||||
assistant_model: Optional["PreTrainedModel"] = None,
|
|
||||||
streamer: Optional["BaseStreamer"] = None,
|
|
||||||
**kwargs,
|
|
||||||
):
|
|
||||||
if hasattr(self, 'pipeline_parallel_stages') and self.pipeline_parallel_stages > 1:
|
|
||||||
# priority: `generation_config` argument > `model.generation_config`
|
|
||||||
if generation_config is None:
|
|
||||||
if (
|
|
||||||
self.generation_config._from_model_config
|
|
||||||
and self.generation_config._original_object_hash == hash(self.generation_config)
|
|
||||||
and self.config._has_non_default_generation_parameters()
|
|
||||||
):
|
|
||||||
new_generation_config = GenerationConfig.from_model_config(self.config)
|
|
||||||
if new_generation_config != self.generation_config:
|
|
||||||
self.generation_config = new_generation_config
|
|
||||||
generation_config = self.generation_config
|
|
||||||
|
|
||||||
if generation_config.pad_token_id is None and generation_config.eos_token_id is not None:
|
|
||||||
eos_token_id = generation_config.eos_token_id
|
|
||||||
if isinstance(eos_token_id, list):
|
|
||||||
eos_token_id = eos_token_id[0]
|
|
||||||
logger.warning("Setting `pad_token_id` to `eos_token_id`: "
|
|
||||||
f"{eos_token_id} for open-end generation.")
|
|
||||||
generation_config.pad_token_id = eos_token_id
|
|
||||||
|
|
||||||
if generation_config is not None and generation_config.max_new_tokens is not None:
|
|
||||||
max_new_tokens = generation_config.pop("max_new_tokens")
|
|
||||||
else:
|
|
||||||
max_new_tokens = kwargs.pop("max_new_tokens", None)
|
|
||||||
|
|
||||||
return self.pipeline_parallel_generate(inputs=inputs,
|
|
||||||
max_new_tokens=max_new_tokens,
|
|
||||||
generation_config=generation_config,
|
|
||||||
**kwargs)
|
|
||||||
|
|
||||||
return original_generate(self,
|
|
||||||
inputs=inputs,
|
|
||||||
generation_config=generation_config,
|
|
||||||
logits_processor=logits_processor,
|
|
||||||
stopping_criteria=stopping_criteria,
|
|
||||||
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
|
||||||
synced_gpus=synced_gpus,
|
|
||||||
assistant_model=assistant_model,
|
|
||||||
streamer=streamer,
|
|
||||||
**kwargs)
|
|
||||||
|
|
||||||
GenerationMixin.generate = generate
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def pipeline_parallel_generate(self,
|
|
||||||
inputs: Optional[torch.Tensor] = None,
|
|
||||||
max_new_tokens: int = 32,
|
|
||||||
generation_config: Optional[GenerationConfig] = None,
|
|
||||||
**kwargs):
|
|
||||||
model_kwargs = generation_config.update(**kwargs)
|
|
||||||
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
|
|
||||||
inputs, generation_config.bos_token_id, model_kwargs
|
|
||||||
)
|
|
||||||
bs = inputs_tensor.shape[0]
|
|
||||||
if model_kwargs.get("attention_mask", None) is None:
|
|
||||||
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
|
|
||||||
inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id)
|
|
||||||
if self.config.is_encoder_decoder:
|
|
||||||
input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
|
|
||||||
batch_size=bs,
|
|
||||||
model_input_name=model_input_name,
|
|
||||||
model_kwargs=model_kwargs,
|
|
||||||
decoder_start_token_id=generation_config.decoder_start_token_id,
|
|
||||||
bos_token_id=generation_config.bos_token_id,
|
|
||||||
device=inputs_tensor.device,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
input_ids = inputs_tensor if model_input_name == "input_ids" \
|
|
||||||
else model_kwargs.pop("input_ids")
|
|
||||||
|
|
||||||
local_rank = dist.get_rank()
|
|
||||||
pre_rank = (local_rank - 1) % self.pipeline_parallel_stages
|
|
||||||
next_rank = (local_rank + 1) % self.pipeline_parallel_stages
|
|
||||||
|
|
||||||
global layer_start
|
|
||||||
global layer_end
|
|
||||||
global num_layers
|
|
||||||
|
|
||||||
self.first_token_time = 0
|
|
||||||
self.next_token_time = []
|
|
||||||
|
|
||||||
pad_token_id = generation_config.pad_token_id
|
|
||||||
eos_token_id = generation_config.eos_token_id
|
|
||||||
if isinstance(eos_token_id, int):
|
|
||||||
eos_token_id = [eos_token_id]
|
|
||||||
eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) \
|
|
||||||
if eos_token_id is not None else None
|
|
||||||
|
|
||||||
_input_ids = None
|
|
||||||
_past_key_values = None
|
|
||||||
|
|
||||||
bs = input_ids.shape[0]
|
|
||||||
output_ids = input_ids.clone()
|
|
||||||
os.environ["IPEX_LLM_QUANTIZE_KV_CACHE"] = "0"
|
|
||||||
|
|
||||||
step = 0
|
|
||||||
# keep track of which sequences are already finished
|
|
||||||
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
|
|
||||||
this_peer_finished = False
|
|
||||||
while True:
|
|
||||||
if step >= max_new_tokens:
|
|
||||||
break
|
|
||||||
|
|
||||||
if _input_ids is None:
|
|
||||||
_input_ids = input_ids
|
|
||||||
|
|
||||||
model_inputs = self.prepare_inputs_for_generation(output_ids, **model_kwargs)
|
|
||||||
|
|
||||||
tic = time.time()
|
|
||||||
if local_rank == 0:
|
|
||||||
outputs = self(**model_inputs)
|
|
||||||
else:
|
|
||||||
_inputs_shape = _input_ids.shape + (self.config.hidden_size,)
|
|
||||||
if step == 0 and self.config.model_type == "chatglm" \
|
|
||||||
and hasattr(self.config, "vision_config"):
|
|
||||||
# for glm-4v, image features are mapped during 1st token
|
|
||||||
# 1597 are computed according to computation process of conv
|
|
||||||
_images_feature = 1597 + _input_ids.shape[0] * 2 + _input_ids.shape[1]
|
|
||||||
_inputs_shape = (_input_ids.shape[0], _images_feature, self.config.hidden_size,)
|
|
||||||
inputs_embeds = torch.empty(_inputs_shape,
|
|
||||||
device=input_ids.device, dtype=torch.float16)
|
|
||||||
dist.recv(inputs_embeds, src=pre_rank)
|
|
||||||
model_inputs.pop("input_ids")
|
|
||||||
model_inputs["inputs_embeds"] = inputs_embeds
|
|
||||||
outputs = self(**model_inputs)
|
|
||||||
|
|
||||||
if local_rank == self.pipeline_parallel_stages - 1:
|
|
||||||
logits = outputs.logits
|
|
||||||
next_ids = torch.argmax(logits[:, -1:, :], dim=-1)
|
|
||||||
dist.broadcast(next_ids, src=local_rank)
|
|
||||||
else:
|
|
||||||
send_data = outputs[0].to(torch.float16)
|
|
||||||
dist.send(send_data, dst=next_rank)
|
|
||||||
next_ids = torch.empty((bs, 1), device=input_ids.device, dtype=torch.int64)
|
|
||||||
dist.broadcast(next_ids, src=self.pipeline_parallel_stages - 1)
|
|
||||||
|
|
||||||
_input_ids = next_ids
|
|
||||||
output_ids = torch.cat([output_ids, next_ids], dim=-1)
|
|
||||||
|
|
||||||
model_kwargs = self._update_model_kwargs_for_generation(
|
|
||||||
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
|
||||||
)
|
|
||||||
|
|
||||||
# finished sentences should have their next token be a padding token
|
|
||||||
next_ids = next_ids.squeeze()
|
|
||||||
if eos_token_id is not None:
|
|
||||||
if pad_token_id is None:
|
|
||||||
invalidInputError(False, "If `eos_token_id` is defined, "
|
|
||||||
"make sure that `pad_token_id` is defined.")
|
|
||||||
next_ids = next_ids * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
|
|
||||||
|
|
||||||
if self.config.model_type == "chatglm" and self.config.num_layers == 40 \
|
|
||||||
and not hasattr(self.config, "vision_config"):
|
|
||||||
# for glm-4-9b-chat
|
|
||||||
if step == 0:
|
|
||||||
value_placeholder = torch.empty_like((outputs.past_key_values)[-1][0])
|
|
||||||
past_key_values_placeholder = tuple(
|
|
||||||
(value_placeholder, value_placeholder) for _ in range(layer_start)
|
|
||||||
) + (outputs.past_key_values)[: layer_end - layer_start] + tuple(
|
|
||||||
(value_placeholder, value_placeholder) for _ in range(layer_end, num_layers)
|
|
||||||
)
|
|
||||||
_past_key_values = past_key_values_placeholder
|
|
||||||
else:
|
|
||||||
_past_key_values = outputs.past_key_values
|
|
||||||
elif self.config.model_type in ["baichuan", "chatglm"] or \
|
|
||||||
(self.config.model_type == "qwen" and hasattr(self.config, "visual")):
|
|
||||||
# for baichuan2, chatglm3, Qwen-VL-Chat, glm-4v-9b
|
|
||||||
if local_rank != 0:
|
|
||||||
value_placeholder = torch.empty_like((outputs.past_key_values)[-1][0])
|
|
||||||
past_key_values_placeholder = tuple(
|
|
||||||
(value_placeholder, value_placeholder) for _ in range(layer_start)
|
|
||||||
) + (outputs.past_key_values)[layer_start:]
|
|
||||||
_past_key_values = past_key_values_placeholder
|
|
||||||
else:
|
|
||||||
_past_key_values = outputs.past_key_values
|
|
||||||
else:
|
|
||||||
_past_key_values = outputs.past_key_values
|
|
||||||
|
|
||||||
toc = time.time()
|
|
||||||
if step == 0:
|
|
||||||
self.first_token_time = toc - tic
|
|
||||||
else:
|
|
||||||
self.next_token_time.append(toc - tic)
|
|
||||||
|
|
||||||
# if eos_token was found in one sentence, set sentence to finished
|
|
||||||
if eos_token_id_tensor is not None:
|
|
||||||
unfinished_sequences = unfinished_sequences.mul(
|
|
||||||
next_ids.tile(eos_token_id_tensor.shape[0], 1)
|
|
||||||
.ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
|
|
||||||
)
|
|
||||||
# stop when each sentence is finished
|
|
||||||
if unfinished_sequences.max() == 0:
|
|
||||||
this_peer_finished = True
|
|
||||||
if this_peer_finished:
|
|
||||||
break
|
|
||||||
|
|
||||||
step += 1
|
|
||||||
if self.device.type == 'xpu':
|
|
||||||
torch.xpu.synchronize()
|
|
||||||
self.rest_cost_mean = np.mean(self.next_token_time)
|
|
||||||
return output_ids
|
|
||||||
|
|
||||||
|
|
||||||
def llama_causallm_forward_4_37_lowmem(
|
|
||||||
self,
|
|
||||||
input_ids: torch.LongTensor = None,
|
|
||||||
attention_mask: Optional[torch.Tensor] = None,
|
|
||||||
position_ids: Optional[torch.LongTensor] = None,
|
|
||||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
||||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
||||||
labels: Optional[torch.LongTensor] = None,
|
|
||||||
use_cache: Optional[bool] = None,
|
|
||||||
output_attentions: Optional[bool] = None,
|
|
||||||
output_hidden_states: Optional[bool] = None,
|
|
||||||
return_dict: Optional[bool] = None,
|
|
||||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
||||||
|
|
||||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions # noqa
|
|
||||||
output_hidden_states = (
|
|
||||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states # noqa
|
|
||||||
)
|
|
||||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
||||||
|
|
||||||
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
||||||
outputs = self.model(
|
|
||||||
input_ids=input_ids,
|
|
||||||
attention_mask=attention_mask,
|
|
||||||
position_ids=position_ids,
|
|
||||||
past_key_values=past_key_values,
|
|
||||||
inputs_embeds=inputs_embeds,
|
|
||||||
use_cache=use_cache,
|
|
||||||
output_attentions=output_attentions,
|
|
||||||
output_hidden_states=output_hidden_states,
|
|
||||||
return_dict=return_dict,
|
|
||||||
)
|
|
||||||
|
|
||||||
hidden_states = outputs[0]
|
|
||||||
|
|
||||||
# ipex-llm change starts
|
|
||||||
|
|
||||||
device = hidden_states.device
|
|
||||||
|
|
||||||
if self.config.pretraining_tp > 1:
|
|
||||||
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0) # noqa
|
|
||||||
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)] # noqa
|
|
||||||
logits = torch.cat(logits, dim=-1)
|
|
||||||
else:
|
|
||||||
if device.type == "xpu":
|
|
||||||
torch.xpu.empty_cache()
|
|
||||||
logits = self.lm_head(hidden_states)
|
|
||||||
if device.type == "xpu":
|
|
||||||
torch.xpu.empty_cache()
|
|
||||||
# logits = logits.float()
|
|
||||||
|
|
||||||
# ipex-llm change ends
|
|
||||||
|
|
||||||
loss = None
|
|
||||||
if labels is not None:
|
|
||||||
# Shift so that tokens < n predict n
|
|
||||||
shift_logits = logits[..., :-1, :].contiguous()
|
|
||||||
shift_labels = labels[..., 1:].contiguous()
|
|
||||||
# Flatten the tokens
|
|
||||||
loss_fct = CrossEntropyLoss()
|
|
||||||
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
||||||
shift_labels = shift_labels.view(-1)
|
|
||||||
# Enable model parallelism
|
|
||||||
shift_labels = shift_labels.to(shift_logits.device)
|
|
||||||
loss = loss_fct(shift_logits, shift_labels)
|
|
||||||
|
|
||||||
if not return_dict:
|
|
||||||
output = (logits,) + outputs[1:]
|
|
||||||
return (loss,) + output if loss is not None else output
|
|
||||||
|
|
||||||
return CausalLMOutputWithPast(
|
|
||||||
loss=loss,
|
|
||||||
logits=logits,
|
|
||||||
past_key_values=outputs.past_key_values,
|
|
||||||
hidden_states=outputs.hidden_states,
|
|
||||||
attentions=outputs.attentions,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def chatglm3_conditional_generation_forward_lowmem(
|
|
||||||
self,
|
|
||||||
input_ids: Optional[torch.Tensor] = None,
|
|
||||||
position_ids: Optional[torch.Tensor] = None,
|
|
||||||
attention_mask: Optional[torch.Tensor] = None,
|
|
||||||
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
|
||||||
inputs_embeds: Optional[torch.Tensor] = None,
|
|
||||||
labels: Optional[torch.Tensor] = None,
|
|
||||||
use_cache: Optional[bool] = None,
|
|
||||||
output_attentions: Optional[bool] = None,
|
|
||||||
output_hidden_states: Optional[bool] = None,
|
|
||||||
return_dict: Optional[bool] = None,
|
|
||||||
return_last_logit: Optional[bool] = False,
|
|
||||||
):
|
|
||||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
||||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
||||||
|
|
||||||
transformer_outputs = self.transformer(
|
|
||||||
input_ids=input_ids,
|
|
||||||
position_ids=position_ids,
|
|
||||||
attention_mask=attention_mask,
|
|
||||||
past_key_values=past_key_values,
|
|
||||||
inputs_embeds=inputs_embeds,
|
|
||||||
use_cache=use_cache,
|
|
||||||
output_hidden_states=output_hidden_states,
|
|
||||||
return_dict=return_dict,
|
|
||||||
)
|
|
||||||
|
|
||||||
hidden_states = transformer_outputs[0]
|
|
||||||
if return_last_logit:
|
|
||||||
hidden_states = hidden_states[-1:]
|
|
||||||
|
|
||||||
device = hidden_states.device
|
|
||||||
# ipex-llm change starts
|
|
||||||
if device.type == "xpu":
|
|
||||||
torch.xpu.empty_cache()
|
|
||||||
lm_logits = self.transformer.output_layer(hidden_states)
|
|
||||||
if device.type == "xpu":
|
|
||||||
torch.xpu.empty_cache()
|
|
||||||
lm_logits = lm_logits.transpose(0, 1).contiguous()
|
|
||||||
|
|
||||||
loss = None
|
|
||||||
if labels is not None:
|
|
||||||
# lm_logits = lm_logits.to(torch.float32)
|
|
||||||
|
|
||||||
# Shift so that tokens < n predict n
|
|
||||||
shift_logits = lm_logits[..., :-1, :].contiguous()
|
|
||||||
shift_labels = labels[..., 1:].contiguous()
|
|
||||||
# Flatten the tokens
|
|
||||||
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
|
||||||
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
|
||||||
|
|
||||||
lm_logits = lm_logits.to(hidden_states.dtype)
|
|
||||||
loss = loss.to(hidden_states.dtype)
|
|
||||||
# ipex-llm change ends
|
|
||||||
|
|
||||||
if not return_dict:
|
|
||||||
output = (lm_logits,) + transformer_outputs[1:]
|
|
||||||
return ((loss,) + output) if loss is not None else output
|
|
||||||
|
|
||||||
return CausalLMOutputWithPast(
|
|
||||||
loss=loss,
|
|
||||||
logits=lm_logits,
|
|
||||||
past_key_values=transformer_outputs.past_key_values,
|
|
||||||
hidden_states=transformer_outputs.hidden_states,
|
|
||||||
attentions=transformer_outputs.attentions,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def glm4_conditional_generation_forward_lowmem(
|
|
||||||
self,
|
|
||||||
input_ids: Optional[torch.Tensor] = None,
|
|
||||||
position_ids: Optional[torch.Tensor] = None,
|
|
||||||
attention_mask: Optional[torch.Tensor] = None,
|
|
||||||
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
|
||||||
inputs_embeds: Optional[torch.Tensor] = None,
|
|
||||||
labels: Optional[torch.Tensor] = None,
|
|
||||||
use_cache: Optional[bool] = None,
|
|
||||||
output_attentions: Optional[bool] = None,
|
|
||||||
output_hidden_states: Optional[bool] = None,
|
|
||||||
return_dict: Optional[bool] = None,
|
|
||||||
return_last_logit: Optional[bool] = False,
|
|
||||||
):
|
|
||||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
||||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
||||||
|
|
||||||
transformer_outputs = self.transformer(
|
|
||||||
input_ids=input_ids,
|
|
||||||
position_ids=position_ids,
|
|
||||||
attention_mask=attention_mask,
|
|
||||||
past_key_values=past_key_values,
|
|
||||||
inputs_embeds=inputs_embeds,
|
|
||||||
use_cache=use_cache,
|
|
||||||
output_hidden_states=output_hidden_states,
|
|
||||||
return_dict=return_dict,
|
|
||||||
)
|
|
||||||
|
|
||||||
hidden_states = transformer_outputs[0]
|
|
||||||
if return_last_logit:
|
|
||||||
hidden_states = hidden_states[:, -1:]
|
|
||||||
|
|
||||||
device = hidden_states.device
|
|
||||||
# ipex-llm change starts
|
|
||||||
if device.type == "xpu":
|
|
||||||
torch.xpu.empty_cache()
|
|
||||||
lm_logits = self.transformer.output_layer(hidden_states)
|
|
||||||
if device.type == "xpu":
|
|
||||||
torch.xpu.empty_cache()
|
|
||||||
|
|
||||||
loss = None
|
|
||||||
if labels is not None:
|
|
||||||
# lm_logits = lm_logits.to(torch.float32)
|
|
||||||
|
|
||||||
# Shift so that tokens < n predict n
|
|
||||||
shift_logits = lm_logits[..., :-1, :].contiguous()
|
|
||||||
shift_labels = labels[..., 1:].contiguous()
|
|
||||||
# Flatten the tokens
|
|
||||||
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
|
||||||
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
|
||||||
|
|
||||||
lm_logits = lm_logits.to(hidden_states.dtype)
|
|
||||||
loss = loss.to(hidden_states.dtype)
|
|
||||||
# ipex-llm change ends
|
|
||||||
|
|
||||||
if not return_dict:
|
|
||||||
output = (lm_logits,) + transformer_outputs[1:]
|
|
||||||
return ((loss,) + output) if loss is not None else output
|
|
||||||
|
|
||||||
return CausalLMOutputWithPast(
|
|
||||||
loss=loss,
|
|
||||||
logits=lm_logits,
|
|
||||||
past_key_values=transformer_outputs.past_key_values,
|
|
||||||
hidden_states=transformer_outputs.hidden_states,
|
|
||||||
attentions=transformer_outputs.attentions,
|
|
||||||
)
|
|
||||||
Loading…
Reference in a new issue