remove obselete npu code (#11967)

This commit is contained in:
Yang Wang 2024-08-29 14:16:44 -07:00 committed by GitHub
parent a9e485eb1b
commit fbf088f61e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 5 additions and 780 deletions

View file

@ -81,21 +81,16 @@ def optimize_llm(model: torch.nn.Module):
from ipex_llm.transformers.npu_models.llama import merge_qkv
from ipex_llm.transformers.npu_models.llama import merge_mlp
from ipex_llm.transformers.npu_models.llama import llama_model_forward
from ipex_llm.transformers.npu_models.llama import llama_fused_model_forward
from ipex_llm.transformers.npu_models.llama import llama_attention_forward
from ipex_llm.transformers.npu_models.llama import llama_mlp_forward
from transformers.models.llama.modeling_llama import LlamaModel
from transformers.models.llama.modeling_llama import LlamaAttention
from transformers.models.llama.modeling_llama import LlamaMLP
if hasattr(model, 'pipeline_parallel_stages'):
# experimental support for fused decoderlayer implementation
convert_forward(model, LlamaModel, llama_fused_model_forward)
else:
model.apply(merge_qkv)
model.apply(merge_mlp)
convert_forward(model, LlamaModel, llama_model_forward)
convert_forward(model, LlamaAttention, llama_attention_forward)
convert_forward(model, LlamaMLP, llama_mlp_forward)
model.apply(merge_qkv)
model.apply(merge_mlp)
convert_forward(model, LlamaModel, llama_model_forward)
convert_forward(model, LlamaAttention, llama_attention_forward)
convert_forward(model, LlamaMLP, llama_mlp_forward)
elif model.config.model_type == "mistral":
from ipex_llm.transformers.npu_models.mistral import merge_qkv

View file

@ -182,137 +182,6 @@ def llama_model_forward(
)
def llama_fused_model_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = (
output_attentions if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
invalidInputError(False,
("You cannot specify both input_ids and inputs_embeds at the same time, "
"and must specify either one"))
if self.gradient_checkpointing and self.training and use_cache:
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
past_seen_tokens = 0
# ipex-llm changes start
from ipex_llm.transformers.npu_models.kv import DynamicFusedNormalCache
if use_cache and not isinstance(past_key_values, DynamicFusedNormalCache):
past_key_values = DynamicFusedNormalCache.from_legacy_cache(past_key_values)
past_seen_tokens = past_key_values.get_seq_length()
if cache_position is None:
cache_position = torch.arange(past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1],
device=inputs_embeds.device)
# ipex-llm changes end
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds,
cache_position, past_seen_tokens)
# embed positions
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
seq_len = hidden_states.size(1)
if seq_len == 1:
# multi_decoder = self.layers[(self.layer_end + 1) % num_layers]
layer_outputs = self.multi_decoder(hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,)
hidden_states = layer_outputs[0]
next_decoder_cache = layer_outputs[1]
else:
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
# ipex-llm changes start
next_cache = next_decoder_cache if use_cache else None
# ipex-llm changes end
if not return_dict:
return tuple(v for v in [hidden_states, next_cache,
all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def llama_attention_forward(
self,
hidden_states: torch.Tensor,

View file

@ -1,639 +0,0 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/huggingface/transformers/blob/main/src/transformers/generation/utils.py
#
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
import torch.nn.functional as F
import torch.distributed as dist
import os
import time
import numpy as np
from typing import Callable, List, Optional, Union, Tuple
from types import SimpleNamespace
import transformers
from transformers import GenerationConfig, LogitsProcessorList, StoppingCriteriaList
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from ipex_llm.utils.common import invalidInputError
from ipex_llm.ggml.quantize import ggml_tensor_qtype
import logging
logger = logging.getLogger(__name__)
# patch GenerationMixin.generate
from transformers import GenerationMixin
original_generate = GenerationMixin.generate
class DummyLayer(nn.Module):
def __init__(self, *args):
super().__init__()
# to avoid AttributeError in https://github.com/intel-analytics/ipex-llm/blob/main/
# python/llm/src/ipex_llm/transformers/models/llama.py#L2076
self.weight = nn.Parameter(torch.empty(0,), requires_grad=False)
def forward(self, x):
return x
class Dummy_MLPLayer(nn.Module):
def __init__(self, *args):
super().__init__()
# to avoid AttributeError in https://github.com/intel-analytics/ipex-llm/blob/main/
# python/llm/src/ipex_llm/transformers/models/llama.py#L119
self.up_proj = DummyLayer()
self.down_proj = DummyLayer()
self.shared_expert = SimpleNamespace()
self.shared_expert.up_proj = DummyLayer()
def forward(self, x):
return x
class Dummy_DecoderLayer(nn.Module):
def __init__(self, *args):
super().__init__()
# to avoid AttributeError
self.input_layernorm = DummyLayer()
self.mlp = Dummy_MLPLayer()
def forward(self, hidden_states, *args, **kwargs):
past_key_value = kwargs.get('past_key_value', None)
use_cache = kwargs.get('use_cache', False)
outputs = (hidden_states,)
if use_cache:
outputs += (past_key_value,)
return outputs
class Dummy_GLMBlock(nn.Module):
def __init__(self, *args):
super().__init__()
# to avoid AttributeError
self.input_layernorm = DummyLayer()
self.mlp = Dummy_MLPLayer()
def forward(
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
):
if kv_cache is None:
return hidden_states, ()
return hidden_states, kv_cache
def init_pipeline_parallel():
import oneccl_bindings_for_pytorch
os.environ["MASTER_ADDR"] = os.environ.get("MASTER_ADDR", "127.0.0.1")
os.environ["MASTER_PORT"] = os.environ.get("MASTER_PORT", "29500")
dist.init_process_group('ccl')
def low_mem_convert(model):
from ipex_llm.transformers.convert import convert_forward
import importlib
if 'llama' in model.config.model_type:
convert_forward(
model,
transformers.models.llama.modeling_llama.LlamaForCausalLM,
llama_causallm_forward_4_37_lowmem)
elif model.config.model_type == "chatglm" and not hasattr(model.config, "vision_config"):
if model.config.num_layers == 40:
# for glm4-9b
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
convert_forward(
model,
module.ChatGLMForConditionalGeneration,
glm4_conditional_generation_forward_lowmem)
else:
# for chatglm3-6b
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
convert_forward(
model,
module.ChatGLMForConditionalGeneration,
chatglm3_conditional_generation_forward_lowmem)
return model
def pipeline_parallel(model, pipeline_parallel_stages, torch_dtype=torch.float32, device=None):
global num_layers
if hasattr(model.config, 'num_hidden_layers'):
num_layers = model.config.num_hidden_layers
elif hasattr(model.config, 'num_layers'):
# for chatglm3-6b
num_layers = model.config.num_layers
slice_size = (num_layers + pipeline_parallel_stages - 1) // pipeline_parallel_stages
local_rank = dist.get_rank()
global layer_start
global layer_end
layer_start = slice_size * local_rank
layer_end = layer_start + min(slice_size, num_layers - layer_start)
if model.config.model_type == "qwen" and hasattr(model.config, "visual"):
# for Qwen-VL-Chat
for i in range(num_layers):
if i < layer_start or i >= layer_end:
model._modules['transformer'].h[i] = Dummy_DecoderLayer()
if local_rank != 0:
model._modules['transformer'].wte = DummyLayer()
model._modules['transformer'].drop = DummyLayer()
if local_rank != pipeline_parallel_stages - 1:
model._modules['transformer'].ln_f = DummyLayer()
model._modules['ln_f'] = DummyLayer()
model._modules['lm_head'] = DummyLayer()
elif model.config.model_type == "chatglm":
# for chatglm3-6b, glm-4-9b-chat
for i in range(num_layers):
if i < layer_start or i >= layer_end:
model._modules['transformer'].encoder.layers[i] = Dummy_GLMBlock()
else:
model._modules['transformer'].encoder.layers[i].self_attention.num_layers = \
i - layer_start
if local_rank != 0:
model._modules['transformer'].embedding = DummyLayer()
if local_rank != pipeline_parallel_stages - 1:
model._modules['transformer'].encoder.final_layernorm = DummyLayer()
model._modules['transformer'].output_layer = DummyLayer()
else:
for i in range(num_layers):
if i < layer_start or i >= layer_end:
model._modules['model'].layers[i] = Dummy_DecoderLayer()
else:
model._modules['model'].layers[i].self_attn.layer_idx = i - layer_start
if local_rank != 0:
model._modules['model'].embed_tokens = DummyLayer()
if local_rank != pipeline_parallel_stages - 1:
model._modules['model'].norm = DummyLayer()
model._modules['lm_head'] = DummyLayer()
_enable_lowmem = os.getenv('IPEX_LLM_LOW_MEM')
_enable_lowmem = (_enable_lowmem is not None) and (_enable_lowmem.lower() == "1")
if _enable_lowmem:
model = low_mem_convert(model)
model.pipeline_parallel_stages = pipeline_parallel_stages
model.layer_start = layer_start
model.layer_end = layer_end
model.num_layers = num_layers
if torch_dtype == torch.float16:
model = model.half()
if device is None:
model = model.to(f'xpu:{local_rank}')
else:
model.to(device)
return model
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
generation_config: Optional[GenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]]=None,
synced_gpus: Optional[bool] = None,
assistant_model: Optional["PreTrainedModel"] = None,
streamer: Optional["BaseStreamer"] = None,
**kwargs,
):
if hasattr(self, 'pipeline_parallel_stages') and self.pipeline_parallel_stages > 1:
# priority: `generation_config` argument > `model.generation_config`
if generation_config is None:
if (
self.generation_config._from_model_config
and self.generation_config._original_object_hash == hash(self.generation_config)
and self.config._has_non_default_generation_parameters()
):
new_generation_config = GenerationConfig.from_model_config(self.config)
if new_generation_config != self.generation_config:
self.generation_config = new_generation_config
generation_config = self.generation_config
if generation_config.pad_token_id is None and generation_config.eos_token_id is not None:
eos_token_id = generation_config.eos_token_id
if isinstance(eos_token_id, list):
eos_token_id = eos_token_id[0]
logger.warning("Setting `pad_token_id` to `eos_token_id`: "
f"{eos_token_id} for open-end generation.")
generation_config.pad_token_id = eos_token_id
if generation_config is not None and generation_config.max_new_tokens is not None:
max_new_tokens = generation_config.pop("max_new_tokens")
else:
max_new_tokens = kwargs.pop("max_new_tokens", None)
return self.pipeline_parallel_generate(inputs=inputs,
max_new_tokens=max_new_tokens,
generation_config=generation_config,
**kwargs)
return original_generate(self,
inputs=inputs,
generation_config=generation_config,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
synced_gpus=synced_gpus,
assistant_model=assistant_model,
streamer=streamer,
**kwargs)
GenerationMixin.generate = generate
@torch.no_grad()
def pipeline_parallel_generate(self,
inputs: Optional[torch.Tensor] = None,
max_new_tokens: int = 32,
generation_config: Optional[GenerationConfig] = None,
**kwargs):
model_kwargs = generation_config.update(**kwargs)
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
inputs, generation_config.bos_token_id, model_kwargs
)
bs = inputs_tensor.shape[0]
if model_kwargs.get("attention_mask", None) is None:
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id)
if self.config.is_encoder_decoder:
input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
batch_size=bs,
model_input_name=model_input_name,
model_kwargs=model_kwargs,
decoder_start_token_id=generation_config.decoder_start_token_id,
bos_token_id=generation_config.bos_token_id,
device=inputs_tensor.device,
)
else:
input_ids = inputs_tensor if model_input_name == "input_ids" \
else model_kwargs.pop("input_ids")
local_rank = dist.get_rank()
pre_rank = (local_rank - 1) % self.pipeline_parallel_stages
next_rank = (local_rank + 1) % self.pipeline_parallel_stages
global layer_start
global layer_end
global num_layers
self.first_token_time = 0
self.next_token_time = []
pad_token_id = generation_config.pad_token_id
eos_token_id = generation_config.eos_token_id
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) \
if eos_token_id is not None else None
_input_ids = None
_past_key_values = None
bs = input_ids.shape[0]
output_ids = input_ids.clone()
os.environ["IPEX_LLM_QUANTIZE_KV_CACHE"] = "0"
step = 0
# keep track of which sequences are already finished
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
this_peer_finished = False
while True:
if step >= max_new_tokens:
break
if _input_ids is None:
_input_ids = input_ids
model_inputs = self.prepare_inputs_for_generation(output_ids, **model_kwargs)
tic = time.time()
if local_rank == 0:
outputs = self(**model_inputs)
else:
_inputs_shape = _input_ids.shape + (self.config.hidden_size,)
if step == 0 and self.config.model_type == "chatglm" \
and hasattr(self.config, "vision_config"):
# for glm-4v, image features are mapped during 1st token
# 1597 are computed according to computation process of conv
_images_feature = 1597 + _input_ids.shape[0] * 2 + _input_ids.shape[1]
_inputs_shape = (_input_ids.shape[0], _images_feature, self.config.hidden_size,)
inputs_embeds = torch.empty(_inputs_shape,
device=input_ids.device, dtype=torch.float16)
dist.recv(inputs_embeds, src=pre_rank)
model_inputs.pop("input_ids")
model_inputs["inputs_embeds"] = inputs_embeds
outputs = self(**model_inputs)
if local_rank == self.pipeline_parallel_stages - 1:
logits = outputs.logits
next_ids = torch.argmax(logits[:, -1:, :], dim=-1)
dist.broadcast(next_ids, src=local_rank)
else:
send_data = outputs[0].to(torch.float16)
dist.send(send_data, dst=next_rank)
next_ids = torch.empty((bs, 1), device=input_ids.device, dtype=torch.int64)
dist.broadcast(next_ids, src=self.pipeline_parallel_stages - 1)
_input_ids = next_ids
output_ids = torch.cat([output_ids, next_ids], dim=-1)
model_kwargs = self._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
)
# finished sentences should have their next token be a padding token
next_ids = next_ids.squeeze()
if eos_token_id is not None:
if pad_token_id is None:
invalidInputError(False, "If `eos_token_id` is defined, "
"make sure that `pad_token_id` is defined.")
next_ids = next_ids * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
if self.config.model_type == "chatglm" and self.config.num_layers == 40 \
and not hasattr(self.config, "vision_config"):
# for glm-4-9b-chat
if step == 0:
value_placeholder = torch.empty_like((outputs.past_key_values)[-1][0])
past_key_values_placeholder = tuple(
(value_placeholder, value_placeholder) for _ in range(layer_start)
) + (outputs.past_key_values)[: layer_end - layer_start] + tuple(
(value_placeholder, value_placeholder) for _ in range(layer_end, num_layers)
)
_past_key_values = past_key_values_placeholder
else:
_past_key_values = outputs.past_key_values
elif self.config.model_type in ["baichuan", "chatglm"] or \
(self.config.model_type == "qwen" and hasattr(self.config, "visual")):
# for baichuan2, chatglm3, Qwen-VL-Chat, glm-4v-9b
if local_rank != 0:
value_placeholder = torch.empty_like((outputs.past_key_values)[-1][0])
past_key_values_placeholder = tuple(
(value_placeholder, value_placeholder) for _ in range(layer_start)
) + (outputs.past_key_values)[layer_start:]
_past_key_values = past_key_values_placeholder
else:
_past_key_values = outputs.past_key_values
else:
_past_key_values = outputs.past_key_values
toc = time.time()
if step == 0:
self.first_token_time = toc - tic
else:
self.next_token_time.append(toc - tic)
# if eos_token was found in one sentence, set sentence to finished
if eos_token_id_tensor is not None:
unfinished_sequences = unfinished_sequences.mul(
next_ids.tile(eos_token_id_tensor.shape[0], 1)
.ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
)
# stop when each sentence is finished
if unfinished_sequences.max() == 0:
this_peer_finished = True
if this_peer_finished:
break
step += 1
if self.device.type == 'xpu':
torch.xpu.synchronize()
self.rest_cost_mean = np.mean(self.next_token_time)
return output_ids
def llama_causallm_forward_4_37_lowmem(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions # noqa
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states # noqa
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
# ipex-llm change starts
device = hidden_states.device
if self.config.pretraining_tp > 1:
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0) # noqa
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)] # noqa
logits = torch.cat(logits, dim=-1)
else:
if device.type == "xpu":
torch.xpu.empty_cache()
logits = self.lm_head(hidden_states)
if device.type == "xpu":
torch.xpu.empty_cache()
# logits = logits.float()
# ipex-llm change ends
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def chatglm3_conditional_generation_forward_lowmem(
self,
input_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
return_last_logit: Optional[bool] = False,
):
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids=input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
if return_last_logit:
hidden_states = hidden_states[-1:]
device = hidden_states.device
# ipex-llm change starts
if device.type == "xpu":
torch.xpu.empty_cache()
lm_logits = self.transformer.output_layer(hidden_states)
if device.type == "xpu":
torch.xpu.empty_cache()
lm_logits = lm_logits.transpose(0, 1).contiguous()
loss = None
if labels is not None:
# lm_logits = lm_logits.to(torch.float32)
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
lm_logits = lm_logits.to(hidden_states.dtype)
loss = loss.to(hidden_states.dtype)
# ipex-llm change ends
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def glm4_conditional_generation_forward_lowmem(
self,
input_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
return_last_logit: Optional[bool] = False,
):
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids=input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
if return_last_logit:
hidden_states = hidden_states[:, -1:]
device = hidden_states.device
# ipex-llm change starts
if device.type == "xpu":
torch.xpu.empty_cache()
lm_logits = self.transformer.output_layer(hidden_states)
if device.type == "xpu":
torch.xpu.empty_cache()
loss = None
if labels is not None:
# lm_logits = lm_logits.to(torch.float32)
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
lm_logits = lm_logits.to(hidden_states.dtype)
loss = loss.to(hidden_states.dtype)
# ipex-llm change ends
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)