LLM: improve PyTorch API doc (#9128)
This commit is contained in:
parent
4a0a3c376a
commit
eb3fb18eb4
2 changed files with 54 additions and 4 deletions
|
|
@ -1,10 +1,24 @@
|
|||
BigDL-LLM PyTorch API
|
||||
=====================
|
||||
|
||||
optimize model
|
||||
Optimize Model
|
||||
----------------------------------------
|
||||
|
||||
.. automodule:: bigdl.llm.optimize
|
||||
You can run any PyTorch model with ``optimize_model`` through only one-line code change to benefit from BigDL-LLM optimization, regardless of the library or API you are using.
|
||||
|
||||
.. automodule:: bigdl.llm
|
||||
:members: optimize_model
|
||||
:undoc-members:
|
||||
:show-inheritance:
|
||||
|
||||
|
||||
|
||||
Load Optimized Model
|
||||
----------------------------------------
|
||||
|
||||
To avoid high resource consumption during the loading processes of the original model, we provide save/load API to support the saving of model after low-bit optimization and the loading of the saved low-bit model. Saving and loading operations are platform-independent, regardless of their operating systems.
|
||||
|
||||
.. automodule:: bigdl.llm.optimize
|
||||
:members: load_low_bit
|
||||
:undoc-members:
|
||||
:show-inheritance:
|
||||
|
|
|
|||
|
|
@ -133,6 +133,33 @@ def low_memory_init():
|
|||
|
||||
|
||||
def load_low_bit(model, model_path):
|
||||
"""
|
||||
Load the optimized pytorch model.
|
||||
|
||||
:param model: The PyTorch model instance
|
||||
:param model_path: The path of saved optimized model
|
||||
|
||||
:return: The optimized model.
|
||||
|
||||
>>> # Example 1:
|
||||
>>> # Take ChatGLM2-6B model as an example
|
||||
>>> # Make sure you have saved the optimized model by calling 'save_low_bit'
|
||||
>>> from bigdl.llm.optimize import low_memory_init, load_low_bit
|
||||
>>> with low_memory_init(): # Fast and low cost by loading model on meta device
|
||||
>>> model = AutoModel.from_pretrained(saved_dir,
|
||||
>>> torch_dtype="auto",
|
||||
>>> trust_remote_code=True)
|
||||
>>> model = load_low_bit(model, saved_dir) # Load the optimized model
|
||||
|
||||
>>> # Example 2:
|
||||
>>> # If the model doesn't fit 'low_memory_init' method,
|
||||
>>> # alternatively, you can obtain the model instance through traditional loading method.
|
||||
>>> # Take OpenAI Whisper model as an example
|
||||
>>> # Make sure you have saved the optimized model by calling 'save_low_bit'
|
||||
>>> from bigdl.llm.optimize import load_low_bit
|
||||
>>> model = whisper.load_model('tiny') # A model instance through traditional loading method
|
||||
>>> model = load_low_bit(model, saved_dir) # Load the optimized model
|
||||
"""
|
||||
low_bit = low_bit_sanity_check(model_path)
|
||||
invalidInputError(isinstance(model, torch.nn.Module),
|
||||
"model should be a instance of "
|
||||
|
|
@ -167,14 +194,23 @@ def load_low_bit(model, model_path):
|
|||
|
||||
def optimize_model(model, low_bit='sym_int4', optimize_llm=True):
|
||||
"""
|
||||
A method to optimize any pytorch models.
|
||||
A method to optimize any pytorch model.
|
||||
|
||||
:param model: The original PyTorch model (nn.module)
|
||||
:param low_bit: Supported low-bit options are "sym_int4", "asym_int4", "sym_int5",
|
||||
"asym_int5" or "sym_int8".
|
||||
:param optimize_llm: Whether to further optimize llm model.
|
||||
|
||||
return: The optimized model.
|
||||
:return: The optimized model.
|
||||
|
||||
>>> # Take OpenAI Whisper model as an example
|
||||
>>> from bigdl.llm import optimize_model
|
||||
>>> model = whisper.load_model('tiny') # Load whisper model under pytorch framework
|
||||
>>> model = optimize_model(model) # With only one line code change
|
||||
>>> # Use the optimized model without other API change
|
||||
>>> result = model.transcribe(audio, verbose=True, language="English")
|
||||
>>> # (Optional) you can also save the optimized model by calling 'save_low_bit'
|
||||
>>> model.save_low_bit(saved_dir)
|
||||
"""
|
||||
invalidInputError(low_bit in ggml_tensor_qtype,
|
||||
f"Unknown load_in_low_bit value: {low_bit}, expected:"
|
||||
|
|
|
|||
Loading…
Reference in a new issue