Add stand-alone mode on cpu for finetuning (#9127)

* Added steps for finetune on CPU in stand-alone mode

* Add stand-alone mode to bigdl-lora-finetuing-entrypoint.sh

* delete redundant docker commands

* Update README.md

Turn to intelanalytics/bigdl-llm-finetune-cpu:2.4.0-SNAPSHOT and append example outputs to allow users to check the running

* Update bigdl-lora-finetuing-entrypoint.sh

Add some tunable parameters

* Add parameters --cpus and -e WORKER_COUNT_DOCKER

* Modified the cpu number range parameters

* Set -ppn to CCL_WORKER_COUNT

* Add related configuration suggestions in README.md
This commit is contained in:
Ziteng Zhang 2023-10-11 15:01:21 +08:00 committed by GitHub
parent 995b0f119f
commit 4a0a3c376a
2 changed files with 150 additions and 42 deletions

View file

@ -1,4 +1,6 @@
## Prepare BigDL image for Lora Finetuning
## Fine-tune LLM with One CPU
### 1. Prepare BigDL image for Lora Finetuning
You can download directly from Dockerhub like:
@ -18,3 +20,87 @@ docker build \
-t intelanalytics/bigdl-llm-finetune-lora-cpu:2.4.0-SNAPSHOT \
-f ./Dockerfile .
```
### 2. Prepare Base Model, Data and Container
Here, we try to finetune [Llama2-7b](https://huggingface.co/meta-llama/Llama-2-7b) with [Cleaned alpaca data](https://raw.githubusercontent.com/tloen/alpaca-lora/main/alpaca_data_cleaned_archive.json), which contains all kinds of general knowledge and has already been cleaned. And please download them and start a docker container with files mounted like below:
```
docker run -itd \
--name=bigdl-llm-fintune-lora-cpu \
--cpuset-cpus="your_expected_range_of_cpu_numbers" \
-e STANDALONE_DOCKER=TRUE \
-e WORKER_COUNT_DOCKER=your_worker_count \
-v your_downloaded_base_model_path:/ppml/model \
-v your_downloaded_data_path:/ppml/data/alpaca_data_cleaned_archive.json \
intelanalytics/bigdl-llm-finetune-cpu:2.4.0-SNAPSHOT \
bash
```
You can adjust the configuration according to your own environment. After our testing, we recommend you set worker_count=1, and then allocate 80G memory to Docker.
### 3. Start Finetuning
Enter the running container:
```
docker exec -it bigdl-llm-fintune-lora-cpu bash
```
Then, run the script to start finetuning:
```
bash /ppml/bigdl-lora-finetuing-entrypoint.sh
```
After minutes, it is expected to get results like:
```
Training Alpaca-LoRA model with params:
base_model: /ppml/model/
data_path: /ppml/data/alpaca_data_cleaned_archive.json
output_dir: /home/mpiuser/finetuned_model
batch_size: 128
micro_batch_size: 8
num_epochs: 3
learning_rate: 0.0003
cutoff_len: 256
val_set_size: 2000
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules: ['q_proj', 'v_proj']
train_on_inputs: True
group_by_length: False
wandb_project:
wandb_run_name:
wandb_watch:
wandb_log_model:
resume_from_checkpoint: None
use_ipex: False
bf16: False
world_size: 2!!
PMI_RANK(local_rank): 1
Loading checkpoint shards: 100%|██████████| 2/2 [00:04<00:00, 2.28s/it]
Loading checkpoint shards: 100%|██████████| 2/2 [00:05<00:00, 2.62s/it]
trainable params: 4194304 || all params: 6742609920 || trainable%: 0.06220594176090199
[INFO] spliting and shuffling dataset...
[INFO] shuffling and tokenizing train data...
Map: 2%|▏ | 1095/49759 [00:00<00:30, 1599.00 examples/s]trainable params: 4194304 || all params: 6742609920 || trainable%: 0.06220594176090199
[INFO] spliting and shuffling dataset...
[INFO] shuffling and tokenizing train data...
Map: 100%|██████████| 49759/49759 [00:29<00:00, 1678.89 examples/s]
[INFO] shuffling and tokenizing test data...
Map: 100%|██████████| 49759/49759 [00:29<00:00, 1685.42 examples/s]
[INFO] shuffling and tokenizing test data...
Map: 100%|██████████| 2000/2000 [00:01<00:00, 1573.61 examples/s]
Map: 100%|██████████| 2000/2000 [00:01<00:00, 1578.71 examples/s]
2023:10:11-01:12:20:( 670) |CCL_WARN| no membind support for NUMA node 0, skip thread membind
2023:10:11-01:12:20:( 671) |CCL_WARN| no membind support for NUMA node 1, skip thread membind
2023:10:11-01:12:20:( 672) |CCL_WARN| no membind support for NUMA node 0, skip thread membind
2023:10:11-01:12:20:( 673) |CCL_WARN| no membind support for NUMA node 1, skip thread membind
[INFO] begining the training of transformers...
[INFO] Process rank: 0, device: cpudistributed training: True
0%| | 1/1164 [02:42<52:28:24, 162.43s/it]
```

View file

@ -1,46 +1,68 @@
#!/bin/bash
set -x
source /opt/intel/oneapi/setvars.sh
export CCL_WORKER_COUNT=$WORLD_SIZE
export CCL_WORKER_AFFINITY=auto
if [ "$WORKER_ROLE" = "launcher" ]
if [ "$STANDALONE_DOCKER" = "TRUE" ]
then
sed "s/:1/ /g" /etc/mpi/hostfile > /home/mpiuser/hostfile
export DATA_PATH="/ppml/data/$DATA_SUB_PATH"
sleep 10
export CONTAINER_IP=$(hostname -i)
export CPU_CORES=$(nproc)
source /opt/intel/oneapi/setvars.sh
export CCL_WORKER_COUNT=$WORKER_COUNT_DOCKER
export CCL_WORKER_AFFINITY=auto
export MASTER_ADDR=$CONTAINER_IP
mpirun \
-n $WORLD_SIZE \
-ppn 1 \
-f /home/mpiuser/hostfile \
-iface eth0 \
-genv OMP_NUM_THREADS=$OMP_NUM_THREADS \
-genv KMP_AFFINITY="granularity=fine,none" \
-genv KMP_BLOCKTIME=1 \
-genv TF_ENABLE_ONEDNN_OPTS=1 \
python /ppml/lora_finetune.py \
--base_model '/ppml/model/' \
--data_path "$DATA_PATH" \
--output_dir "/home/mpiuser/finetuned_model" \
--micro_batch_size $MICRO_BATCH_SIZE \
--bf16 > /home/mpiuser/launcher.log 2>&1
exit_status=$?
if [ $exit_status -ne 0 ];
then
cat /home/mpiuser/launcher.log
exit $exit_status
else
while true
do
echo "[INFO] Successfully finished training"
sleep 900
done
fi
elif [ "$WORKER_ROLE" = "trainer" ]
then
export LOCAL_RANK=$(cut -d "-" -f6 <<< "$LOCAL_POD_NAME")
export PMI_SIZE=$WORLD_SIZE
export PMI_RANK=$LOCAL_RANK
/usr/sbin/sshd -De -f /home/mpiuser/.sshd_config
fi
-n $CCL_WORKER_COUNT \
-ppn $CCL_WORKER_COUNT \
-genv OMP_NUM_THREADS=$((CPU_CORES / CCL_WORKER_COUNT)) \
-genv KMP_AFFINITY="granularity=fine,none" \
-genv KMP_BLOCKTIME=1 \
-genv TF_ENABLE_ONEDNN_OPTS=1 \
python /ppml/lora_finetune.py \
--base_model '/ppml/model/' \
--data_path "/ppml/data/alpaca_data_cleaned_archive.json" \
--output_dir "/home/mpiuser/finetuned_model" \
--micro_batch_size 8 \
--bf16
else
source /opt/intel/oneapi/setvars.sh
export CCL_WORKER_COUNT=$WORLD_SIZE
export CCL_WORKER_AFFINITY=auto
if [ "$WORKER_ROLE" = "launcher" ]
then
sed "s/:1/ /g" /etc/mpi/hostfile > /home/mpiuser/hostfile
export DATA_PATH="/ppml/data/$DATA_SUB_PATH"
sleep 10
mpirun \
-n $WORLD_SIZE \
-ppn 1 \
-f /home/mpiuser/hostfile \
-iface eth0 \
-genv OMP_NUM_THREADS=$OMP_NUM_THREADS \
-genv KMP_AFFINITY="granularity=fine,none" \
-genv KMP_BLOCKTIME=1 \
-genv TF_ENABLE_ONEDNN_OPTS=1 \
python /ppml/lora_finetune.py \
--base_model '/ppml/model/' \
--data_path "$DATA_PATH" \
--output_dir "/home/mpiuser/finetuned_model" \
--micro_batch_size $MICRO_BATCH_SIZE \
--bf16 > /home/mpiuser/launcher.log 2>&1
exit_status=$?
if [ $exit_status -ne 0 ];
then
cat /home/mpiuser/launcher.log
exit $exit_status
else
while true
do
echo "[INFO] Successfully finished training"
sleep 900
done
fi
elif [ "$WORKER_ROLE" = "trainer" ]
then
export LOCAL_RANK=$(cut -d "-" -f6 <<< "$LOCAL_POD_NAME")
export PMI_SIZE=$WORLD_SIZE
export PMI_RANK=$LOCAL_RANK
/usr/sbin/sshd -De -f /home/mpiuser/.sshd_config
fi
fi