Update all-in-one benchmark (#12272)
* Update all-in-one benchmark * Small fix * Small fix * Small fix
This commit is contained in:
		
							parent
							
								
									43b25a2fe7
								
							
						
					
					
						commit
						e713296090
					
				
					 3 changed files with 6 additions and 132 deletions
				
			
		| 
						 | 
				
			
			@ -2,9 +2,7 @@
 | 
			
		|||
 | 
			
		||||
All in one benchmark test allows users to test all the benchmarks and record them in a result CSV. Users can provide models and related information in `config.yaml`.
 | 
			
		||||
 | 
			
		||||
Before running, make sure you have [ipex-llm](../../../../../README.md) installed.
 | 
			
		||||
 | 
			
		||||
If you would like to use all-in-one benchmark for testing OpenVINO, please directly refer to [this section](#optional-save-model-for-openvino) for environment setup.
 | 
			
		||||
Before running, make sure to have [ipex-llm](../../../../../README.md) installed.
 | 
			
		||||
 | 
			
		||||
> The prompts for benchmarking are from datasets [abisee/cnn_dailymail](https://huggingface.co/datasets/abisee/cnn_dailymail), [Open-Orca/OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca), [THUDM/LongBench](https://huggingface.co/datasets/THUDM/LongBench), etc.
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -62,12 +60,11 @@ test_api:
 | 
			
		|||
  # - "speculative_cpu"                     # on Intel CPU, inference with self-speculative decoding
 | 
			
		||||
  # - "deepspeed_transformer_int4_cpu"      # on Intel CPU, deepspeed autotp inference
 | 
			
		||||
  # - "transformers_int4_npu_win"           # on Intel NPU for Windows, transformer-like API, (qtype=int4)
 | 
			
		||||
  # - "transformers_openvino"               # on Intel GPU, use OpenVINO. Please make sure you have used the save_openvino.py to save the converted OpenVINO model
 | 
			
		||||
cpu_embedding: False # whether put embedding to CPU
 | 
			
		||||
streaming: False # whether output in streaming way (only available now for gpu win related test_api)
 | 
			
		||||
use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only available now for "pipeline_parallel_gpu" test_api)
 | 
			
		||||
task: 'continuation' # task can be 'continuation', 'QA' and 'summarize'
 | 
			
		||||
group_size: 64 # group_size when converting OpenVINO model (only available or "transformers_openvino" test_api)
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
## (Optional) Save model in low bit
 | 
			
		||||
| 
						 | 
				
			
			@ -75,25 +72,11 @@ If you choose the `transformer_int4_loadlowbit_gpu_win` or `transformer_int4_fp1
 | 
			
		|||
 | 
			
		||||
Running `python save.py` will save all models declared in `repo_id` list into low bit models under `local_model_hub` folder.
 | 
			
		||||
 | 
			
		||||
## (Optional) Save model for OpenVINO
 | 
			
		||||
If you choose the `transformers_openvino` test API, you will need to convert the model with OpenVINO first.
 | 
			
		||||
 | 
			
		||||
Follow commands below to set up the environment for testing OpenVINO on Intel GPU, in which `requirements.txt` should be downloaded from [here](Download the requirements txt from https://github.com/openvino-dev-samples/Qwen2.openvino/blob/main/requirements.txt):
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n test-ov python=3.11
 | 
			
		||||
pip install -r requirements.txt
 | 
			
		||||
pip install --pre --upgrade ipex-llm # only for IPEX-LLM BenchmarkWrapper
 | 
			
		||||
pip install accelerate omegaconf pandas
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Then, running `python save_openvino.py` will save all models declared in `repo_id` list into OpenVINO models with `low_bit` precision under `local_model_hub` folder.
 | 
			
		||||
 | 
			
		||||
## Run
 | 
			
		||||
 | 
			
		||||
run `python run.py`, this will output results to `results.csv`.
 | 
			
		||||
 | 
			
		||||
For IPEX-LLM SPR performance, run `bash run-spr.sh`.
 | 
			
		||||
For SPR performance, run `bash run-spr.sh`.
 | 
			
		||||
 | 
			
		||||
> **Note**
 | 
			
		||||
>
 | 
			
		||||
| 
						 | 
				
			
			@ -103,6 +86,6 @@ For IPEX-LLM SPR performance, run `bash run-spr.sh`.
 | 
			
		|||
>
 | 
			
		||||
> Please install torch nightly version to avoid `Illegal instruction (core dumped)` issue, you can follow the following command to install: `pip install --pre --upgrade torch --index-url https://download.pytorch.org/whl/nightly/cpu`
 | 
			
		||||
 | 
			
		||||
For IPEX-LLM ARC performance, run `bash run-arc.sh`.
 | 
			
		||||
For ARC performance, run `bash run-arc.sh`.
 | 
			
		||||
 | 
			
		||||
For IPEX-LLM MAX GPU performance, run `bash run-max-gpu.sh`.
 | 
			
		||||
For MAX GPU performance, run `bash run-max-gpu.sh`.
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -37,11 +37,9 @@ test_api:
 | 
			
		|||
  # - "deepspeed_transformer_int4_cpu"      # on Intel CPU, deepspeed autotp inference
 | 
			
		||||
  # - "transformers_int4_npu_win"           # on Intel NPU for Windows,  transformer-like API, (qtype=int4)
 | 
			
		||||
  # - "transformers_int4_loadlowbit_npu_win" # on Intel NPU for Windows, transformer-like API, (qtype=int4), use load_low_bit API. Please make sure you have used the save_npu.py to save the converted low bit model
 | 
			
		||||
  # - "transformers_openvino"               # on Intel GPU, use OpenVINO. Please make sure you have used the save_openvino.py to save the converted OpenVINO model
 | 
			
		||||
cpu_embedding: False # whether put embedding to CPU
 | 
			
		||||
streaming: False # whether output in streaming way (only available now for gpu win related test_api)
 | 
			
		||||
optimize_model: False # whether apply further optimization on NPU (only available now for transformers_int4_npu_win test_api)
 | 
			
		||||
use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only available now for "pipeline_parallel_gpu" test_api)
 | 
			
		||||
task: 'continuation' # task can be 'continuation', 'QA' and 'summarize'
 | 
			
		||||
transpose_value_cache: True # whether apply transposed v_cache optimization on NPU (only available now for transformers_int4_npu_win test_api)
 | 
			
		||||
group_size: 64 # group_size when converting OpenVINO model (only available or "transformers_openvino" test_api)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,107 +0,0 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
# Some parts of this file is adapted from
 | 
			
		||||
# https://github.com/openvino-dev-samples/Qwen2.openvino/blob/main/convert.py
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
from pathlib import Path
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
from transformers import AutoTokenizer, LlamaTokenizer
 | 
			
		||||
from optimum.intel import OVWeightQuantizationConfig
 | 
			
		||||
from optimum.intel.openvino import OVModelForCausalLM
 | 
			
		||||
 | 
			
		||||
from run import LLAMA_IDS, get_model_path
 | 
			
		||||
 | 
			
		||||
current_dir = os.path.dirname(os.path.realpath(__file__))
 | 
			
		||||
 | 
			
		||||
def save_model_to_openvino(repo_id,
 | 
			
		||||
                           local_model_hub,
 | 
			
		||||
                           low_bit,
 | 
			
		||||
                           group_size,
 | 
			
		||||
                           ):
 | 
			
		||||
    model_path = get_model_path(repo_id, local_model_hub)
 | 
			
		||||
 | 
			
		||||
    ir_repo_id = (repo_id.split(
 | 
			
		||||
        "/")[1] + '-ov-' + low_bit + '-' +str(group_size))
 | 
			
		||||
 | 
			
		||||
    if local_model_hub:
 | 
			
		||||
        repo_model_name = repo_id.split(
 | 
			
		||||
        "/")[1] + '-ov-' + low_bit + '-' +str(group_size)
 | 
			
		||||
        ir_model_path = local_model_hub + os.path.sep + repo_model_name
 | 
			
		||||
        ir_model_path = Path(ir_model_path)
 | 
			
		||||
    else:
 | 
			
		||||
        ir_model_path = Path(ir_repo_id)
 | 
			
		||||
 | 
			
		||||
    if not ir_model_path.exists():
 | 
			
		||||
        os.mkdir(ir_model_path)
 | 
			
		||||
 | 
			
		||||
    compression_configs = {
 | 
			
		||||
        "sym": True,
 | 
			
		||||
        "group_size": group_size,
 | 
			
		||||
        "ratio": 1.0,
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    print(">> Exporting IR")
 | 
			
		||||
    if low_bit == "sym_int4":
 | 
			
		||||
        compression_configs['sym'] = True
 | 
			
		||||
        ov_model = OVModelForCausalLM.from_pretrained(model_path, export=True, 
 | 
			
		||||
                                                      trust_remote_code=True,
 | 
			
		||||
                                                      compile=False, quantization_config=OVWeightQuantizationConfig(
 | 
			
		||||
                                                      bits=4, **compression_configs)).eval()
 | 
			
		||||
    elif low_bit == "asym_int4":
 | 
			
		||||
        compression_configs['sym'] = False
 | 
			
		||||
        ov_model = OVModelForCausalLM.from_pretrained(model_path, export=True, 
 | 
			
		||||
                                                      trust_remote_code=True,
 | 
			
		||||
                                                      compile=False, quantization_config=OVWeightQuantizationConfig(
 | 
			
		||||
                                                      bits=4, **compression_configs)).eval()
 | 
			
		||||
 | 
			
		||||
    print(">> Saving IR")
 | 
			
		||||
    ov_model.save_pretrained(ir_model_path)
 | 
			
		||||
 | 
			
		||||
    print(">> Exporting tokenizer")
 | 
			
		||||
    if repo_id in LLAMA_IDS:
 | 
			
		||||
        tokenizer = LlamaTokenizer.from_pretrained(model_path,
 | 
			
		||||
                                                   trust_remote_code=True)
 | 
			
		||||
    else:
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
			
		||||
                                                  trust_remote_code=True)
 | 
			
		||||
    tokenizer.save_pretrained(ir_model_path)
 | 
			
		||||
 | 
			
		||||
    print(">> Exporting IR tokenizer")
 | 
			
		||||
    from optimum.exporters.openvino.convert import export_tokenizer
 | 
			
		||||
    export_tokenizer(tokenizer, ir_model_path)
 | 
			
		||||
    print(f">> Finished saving OpenVINO IR for {repo_id} in {low_bit} with group size {group_size}")
 | 
			
		||||
    del ov_model
 | 
			
		||||
    del model_path
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    supported_precision = ["sym_int4", "asym_int4"]
 | 
			
		||||
 | 
			
		||||
    from omegaconf import OmegaConf
 | 
			
		||||
    conf = OmegaConf.load(f'{current_dir}/config.yaml')
 | 
			
		||||
 | 
			
		||||
    if conf['low_bit'] in supported_precision:
 | 
			
		||||
        for model in conf.repo_id:
 | 
			
		||||
            save_model_to_openvino(repo_id=model,
 | 
			
		||||
                                   local_model_hub=conf['local_model_hub'],
 | 
			
		||||
                                   low_bit=conf['low_bit'],
 | 
			
		||||
                                   group_size=conf['group_size'],)
 | 
			
		||||
    else:
 | 
			
		||||
        warnings.warn(f"low_bit {conf['low_bit']} is not supported "
 | 
			
		||||
                      "in all-in-one benchmark for OpenVINO tests. Only "
 | 
			
		||||
                      'sym_int4 and asym_int4 is currently supported for "transformers_openvino" test api.')
 | 
			
		||||
		Loading…
	
		Reference in a new issue