[LLM] Add model correctness test on ARC for llama and falcon (#9347)

* add correctness test on arc for llama model

* modify layer name

* add falcon ut

* refactor and add ut for falcon model

* modify lambda positions and update docs

* replace loading pre input with last decodelayer output

* switch lower bound to single model instead of using the common one

* make the code implementation simple

* fix gpu action allocation memory issue
This commit is contained in:
SONG Ge 2023-11-10 13:48:57 +08:00 committed by GitHub
parent 3d107f6d25
commit dfb00e37e9
2 changed files with 106 additions and 4 deletions

View file

@ -14,11 +14,13 @@
# limitations under the License.
#
import pytest
import os
import pytest
from bigdl.llm.transformers import AutoModelForCausalLM, AutoModel
import torch
from transformers import LlamaTokenizer, AutoTokenizer
from bigdl.llm.transformers import AutoModelForCausalLM, AutoModel
device = os.environ['DEVICE']
print(f'Running on {device}')
@ -29,7 +31,7 @@ prompt = "Once upon a time, there existed a little girl who liked to have advent
@pytest.mark.parametrize('Model, Tokenizer, model_path',[
(AutoModelForCausalLM, AutoTokenizer, os.environ.get('MPT_7B_ORIGIN_PATH')),
(AutoModelForCausalLM, AutoTokenizer, os.environ.get('FALCON_7B_ORIGIN_PATH')),
(AutoModelForCausalLM, AutoTokenizer, os.environ.get('FALCON_7B_ORIGIN_PATH'))
])
def test_optimize_model(Model, Tokenizer, model_path):
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
@ -55,6 +57,107 @@ def test_optimize_model(Model, Tokenizer, model_path):
assert any(diff) is False
class Test_Optimize_Gpu_Model:
def setup(self):
self.layer_outputs = []
self.pre_layer_outputs = []
def run_optimize_gpu_model(self, Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound):
def forward_hook(module, input, output, layer_name):
self.layer_outputs.append(output)
def pre_forward_hook(module, input, output, layer_name):
self.pre_layer_outputs.append(output)
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
model = Model.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=False,
trust_remote_code=True)
model = model.to(device)
for layer_name, layer_module in model.named_modules():
if layer_name == layer_norm:
layer_module.register_forward_hook(
lambda module, input, output, layer_name=layer_name: pre_forward_hook(module, input,
output, layer_name))
if layer_name == self_attn:
layer_module.register_forward_hook(
lambda module, input, output, layer_name=layer_name: forward_hook(module, input,
output, layer_name))
logits_base_model = (model(input_ids)).logits
# the list `layer_output` has only one element.
layer_tensor = self.layer_outputs.pop()
model.to('cpu')
opt_model = Model.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True)
opt_model = opt_model.to(device)
def replace_forward_hook(module, input, output, layer_name):
output = self.pre_layer_outputs[0]
return output
for layer_name, layer_module in opt_model.named_modules():
if layer_name == layer_norm:
layer_module.register_forward_hook(
lambda module, input, output, layer_name=layer_name: replace_forward_hook(module, input,
output, layer_name))
if layer_name == self_attn:
layer_module.register_forward_hook(
lambda module, input, output, layer_name=layer_name: forward_hook(module, input,
output, layer_name))
logits_optimized_model = (opt_model(input_ids)).logits
# the list `layer_output` has only one element.
opt_layer_tensor = self.layer_outputs[0]
opt_model.to('cpu')
attn_output_diff = []
for i, (t1, t2) in enumerate(zip(layer_tensor, opt_layer_tensor)):
if t1 is not None and t2 is not None:
if isinstance(t1, torch.Tensor) and isinstance(t2, torch.Tensor):
# 'attn_output' is of type torch.Tensor.
attn_output_diff.append(t1 - t2)
else:
# 'past_key_value'is of type tuple as default.
for i, (t3, t4) in enumerate(zip(t1, t2)):
attn_output_diff.append(t3 - t4)
max_diff_tensor = [torch.max(item).item() for item in attn_output_diff]
assert all(max_diff <= lower_bound for max_diff in max_diff_tensor)
def test_falcon_gpu_model(self):
Model = AutoModelForCausalLM
Tokenizer = AutoTokenizer
model_path = os.environ.get('FALCON_7B_ORIGIN_PATH')
# currently only compare the output of the last self-attention layer.
layer_norm = "transformer.h.31.input_layernorm"
self_attn = "transformer.h.31.self_attention"
lower_bound = 0
self.run_optimize_gpu_model(Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
def test_llama_gpu_model(self):
Model = AutoModelForCausalLM
Tokenizer = AutoTokenizer
model_path = os.environ.get('LLAMA2_7B_ORIGIN_PATH')
# currently only compare the output of the last self-attention layer.
layer_norm = "model.layers.31.input_layernorm"
self_attn = "model.layers.31.self_attn"
lower_bound = 5e-2
self.run_optimize_gpu_model(Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
if __name__ == '__main__':
pytest.main([__file__])

View file

@ -5,7 +5,6 @@ export LLM_HOME=${ANALYTICS_ZOO_ROOT}/python/llm/src
export LLM_INFERENCE_TEST_DIR=${ANALYTICS_ZOO_ROOT}/python/llm/test/inference_gpu
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export DEVICE='xpu'
set -e