ipex-llm/python/llm/test/inference_gpu/test_optimize_model.py
SONG Ge dfb00e37e9 [LLM] Add model correctness test on ARC for llama and falcon (#9347)
* add correctness test on arc for llama model

* modify layer name

* add falcon ut

* refactor and add ut for falcon model

* modify lambda positions and update docs

* replace loading pre input with last decodelayer output

* switch lower bound to single model instead of using the common one

* make the code implementation simple

* fix gpu action allocation memory issue
2023-11-10 13:48:57 +08:00

163 lines
6.8 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import pytest
import torch
from transformers import LlamaTokenizer, AutoTokenizer
from bigdl.llm.transformers import AutoModelForCausalLM, AutoModel
device = os.environ['DEVICE']
print(f'Running on {device}')
if device == 'xpu':
import intel_extension_for_pytorch as ipex
prompt = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
@pytest.mark.parametrize('Model, Tokenizer, model_path',[
(AutoModelForCausalLM, AutoTokenizer, os.environ.get('MPT_7B_ORIGIN_PATH')),
(AutoModelForCausalLM, AutoTokenizer, os.environ.get('FALCON_7B_ORIGIN_PATH'))
])
def test_optimize_model(Model, Tokenizer, model_path):
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
model = Model.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=False,
trust_remote_code=True)
model = model.to(device)
logits_base_model = (model(input_ids)).logits
model.to('cpu') # deallocate gpu memory
model = Model.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True)
model = model.to(device)
logits_optimized_model = (model(input_ids)).logits
model.to('cpu')
diff = abs(logits_base_model - logits_optimized_model).flatten()
assert any(diff) is False
class Test_Optimize_Gpu_Model:
def setup(self):
self.layer_outputs = []
self.pre_layer_outputs = []
def run_optimize_gpu_model(self, Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound):
def forward_hook(module, input, output, layer_name):
self.layer_outputs.append(output)
def pre_forward_hook(module, input, output, layer_name):
self.pre_layer_outputs.append(output)
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
model = Model.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=False,
trust_remote_code=True)
model = model.to(device)
for layer_name, layer_module in model.named_modules():
if layer_name == layer_norm:
layer_module.register_forward_hook(
lambda module, input, output, layer_name=layer_name: pre_forward_hook(module, input,
output, layer_name))
if layer_name == self_attn:
layer_module.register_forward_hook(
lambda module, input, output, layer_name=layer_name: forward_hook(module, input,
output, layer_name))
logits_base_model = (model(input_ids)).logits
# the list `layer_output` has only one element.
layer_tensor = self.layer_outputs.pop()
model.to('cpu')
opt_model = Model.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True)
opt_model = opt_model.to(device)
def replace_forward_hook(module, input, output, layer_name):
output = self.pre_layer_outputs[0]
return output
for layer_name, layer_module in opt_model.named_modules():
if layer_name == layer_norm:
layer_module.register_forward_hook(
lambda module, input, output, layer_name=layer_name: replace_forward_hook(module, input,
output, layer_name))
if layer_name == self_attn:
layer_module.register_forward_hook(
lambda module, input, output, layer_name=layer_name: forward_hook(module, input,
output, layer_name))
logits_optimized_model = (opt_model(input_ids)).logits
# the list `layer_output` has only one element.
opt_layer_tensor = self.layer_outputs[0]
opt_model.to('cpu')
attn_output_diff = []
for i, (t1, t2) in enumerate(zip(layer_tensor, opt_layer_tensor)):
if t1 is not None and t2 is not None:
if isinstance(t1, torch.Tensor) and isinstance(t2, torch.Tensor):
# 'attn_output' is of type torch.Tensor.
attn_output_diff.append(t1 - t2)
else:
# 'past_key_value'is of type tuple as default.
for i, (t3, t4) in enumerate(zip(t1, t2)):
attn_output_diff.append(t3 - t4)
max_diff_tensor = [torch.max(item).item() for item in attn_output_diff]
assert all(max_diff <= lower_bound for max_diff in max_diff_tensor)
def test_falcon_gpu_model(self):
Model = AutoModelForCausalLM
Tokenizer = AutoTokenizer
model_path = os.environ.get('FALCON_7B_ORIGIN_PATH')
# currently only compare the output of the last self-attention layer.
layer_norm = "transformer.h.31.input_layernorm"
self_attn = "transformer.h.31.self_attention"
lower_bound = 0
self.run_optimize_gpu_model(Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
def test_llama_gpu_model(self):
Model = AutoModelForCausalLM
Tokenizer = AutoTokenizer
model_path = os.environ.get('LLAMA2_7B_ORIGIN_PATH')
# currently only compare the output of the last self-attention layer.
layer_norm = "model.layers.31.input_layernorm"
self_attn = "model.layers.31.self_attn"
lower_bound = 5e-2
self.run_optimize_gpu_model(Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
if __name__ == '__main__':
pytest.main([__file__])