refactor device check and remove cohere/mixtral support (#12659)

This commit is contained in:
Yishuo Wang 2025-01-07 11:15:51 +08:00 committed by GitHub
parent ea65e4fecc
commit ddc0ef3993
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
9 changed files with 44 additions and 1359 deletions

View file

@ -1710,31 +1710,6 @@ def _optimize_post(model):
convert_forward(model, module.VisionAttention, qwen2_vision_attention_forward) convert_forward(model, module.VisionAttention, qwen2_vision_attention_forward)
convert_forward(model, module.Qwen2VLModel, qwen2_vl_model_forward) convert_forward(model, module.Qwen2VLModel, qwen2_vl_model_forward)
convert_forward(model, module.Qwen2VLAttention, qwen2_vl_attention_forward) convert_forward(model, module.Qwen2VLAttention, qwen2_vl_attention_forward)
elif model.config.model_type == "cohere":
# for CohereForAI/c4ai-command-r-v01
invalidInputError(version.parse(trans_version) >= version.parse("4.40.0"),
"Please upgrade transformers to 4.40.0 or higher version "
"to run Mixtral models.")
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
if version.parse(trans_version) >= version.parse("4.41.0"):
from ipex_llm.transformers.models.cohere import cohere_model_forward_4_41
convert_forward(model,
module.CohereModel,
cohere_model_forward_4_41)
else:
from ipex_llm.transformers.models.cohere import cohere_model_forward
convert_forward(model,
module.CohereModel,
cohere_model_forward)
from ipex_llm.transformers.models.cohere import cohere_attention_forward
convert_forward(model,
module.CohereAttention,
cohere_attention_forward)
convert_forward(model,
module.CohereMLP,
mlp_silu_forward)
elif model.config.model_type == "aquila": elif model.config.model_type == "aquila":
modeling_module_name = model.__class__.__module__ modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name) module = importlib.import_module(modeling_module_name)
@ -1746,31 +1721,6 @@ def _optimize_post(model):
convert_forward(model, convert_forward(model,
module.AquilaRMSNorm, module.AquilaRMSNorm,
rms_norm_forward) rms_norm_forward)
elif model.config.model_type == "mixtral":
# For mistralai/Mixtral-8x7B-v0.1
invalidInputError(version.parse(trans_version) >= version.parse("4.36.0"),
"Please upgrade transformers to 4.36.0 or higher version "
"to run Mixtral models.")
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
from ipex_llm.transformers.models.mixtral import mixtral_moeblock_forward, \
mixtral_attention_forward, mixtral_mlp_forward, mixtral_model_forward
convert_forward(model,
module.MixtralAttention,
mixtral_attention_forward)
convert_forward(model,
module.MixtralRMSNorm,
rms_norm_forward)
convert_forward(model,
module.MixtralSparseMoeBlock,
mixtral_moeblock_forward)
convert_forward(model,
module.MixtralBLockSparseTop2MLP,
mixtral_mlp_forward)
convert_forward(model,
module.MixtralModel,
mixtral_model_forward)
elif model.config.model_type == "phi-msft" and \ elif model.config.model_type == "phi-msft" and \
hasattr(model.config, "num_local_experts"): hasattr(model.config, "num_local_experts"):
# For phixtral, limit the condition to avoid applying on phi-2 hosted by ModelScope # For phixtral, limit the condition to avoid applying on phi-2 hosted by ModelScope
@ -1785,16 +1735,6 @@ def _optimize_post(model):
module.MLP, module.MLP,
phixtral_mlp_forward) phixtral_mlp_forward)
elif model.config.model_type == "mistral": elif model.config.model_type == "mistral":
if model.config.architectures is not None and \
model.config.architectures[0] == "MixtralForCausalLM":
# For DiscoResearch/mixtral-7b-8expert
invalidInputError(version.parse(trans_version) >= version.parse("4.36.0"),
"Please upgrade transformers to 4.36.0 or higher version "
"to run Mixtral models.")
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
convert_forward(model, module.MistralRMSNorm, rms_norm_forward)
else:
modeling_module_name = model.__class__.__module__ modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name) module = importlib.import_module(modeling_module_name)

View file

@ -33,7 +33,7 @@ from ipex_llm.transformers.speculative import greedy, deepmind_sample, logits_to
_crop_past_key_values, _prepare_generate_args, _non_cpu_ipex_verify, clear_benchmarks,\ _crop_past_key_values, _prepare_generate_args, _non_cpu_ipex_verify, clear_benchmarks,\
_prepare_generate_args_4_45 _prepare_generate_args_4_45
from ipex_llm.utils.common import invalidInputError from ipex_llm.utils.common import invalidInputError
from ipex_llm.transformers.utils import get_xpu_device_type from ipex_llm.transformers.utils import get_xpu_device_name
logger = logging.getLogger("ipex_llm.lookup") logger = logging.getLogger("ipex_llm.lookup")
@ -295,7 +295,7 @@ def lookup_generate(self,
invalidInputError(input_ids.shape[0] == 1, invalidInputError(input_ids.shape[0] == 1,
"Prompt lookup is currently not supported with batch inference.") "Prompt lookup is currently not supported with batch inference.")
device_name = get_xpu_device_type(input_ids) device_name = get_xpu_device_name(input_ids.device)
candidates_generator = PromptLookupCandidateGenerator( candidates_generator = PromptLookupCandidateGenerator(
num_output_tokens=num_output_tokens, num_output_tokens=num_output_tokens,

View file

@ -51,7 +51,7 @@ from torch import Tensor, device, dtype, nn
from operator import mul from operator import mul
from functools import reduce from functools import reduce
from ipex_llm.transformers.xpu_customize_fwd import custom_fwd, custom_bwd from ipex_llm.transformers.xpu_customize_fwd import custom_fwd, custom_bwd
from ipex_llm.transformers.utils import get_autocast_dtype, get_xpu_device_type, \ from ipex_llm.transformers.utils import get_autocast_dtype, get_xpu_device_name, \
get_ipex_version get_ipex_version
from ipex_llm.transformers.convert import is_deepspeed_available, get_use_vllm from ipex_llm.transformers.convert import is_deepspeed_available, get_use_vllm
@ -266,7 +266,7 @@ def reshape_lm_head_input(x):
def use_batch_forward(x: torch.Tensor, qtype: int, output_len: int): def use_batch_forward(x: torch.Tensor, qtype: int, output_len: int):
device = get_xpu_device_type(x) device_name = get_xpu_device_name(x.device)
batch_size = x.shape[0] batch_size = x.shape[0]
hard_condition = ( hard_condition = (
x.dtype in [torch.float, torch.half] x.dtype in [torch.float, torch.half]
@ -286,7 +286,7 @@ def use_batch_forward(x: torch.Tensor, qtype: int, output_len: int):
or ( or (
qtype in [SYM_INT8, FP4, FP6, Q4_K, Q6_K] qtype in [SYM_INT8, FP4, FP6, Q4_K, Q6_K]
and batch_size <= 48 and batch_size <= 48
and device in ["arc", "flex", "pvc", "mtl"] and device_name in ["arc", "pvc", "mtl", "lnl", "arl"]
and x.shape[1] % 256 == 0 and x.shape[1] % 256 == 0
and output_len % 32 == 0 and output_len % 32 == 0
) )
@ -295,8 +295,8 @@ def use_batch_forward(x: torch.Tensor, qtype: int, output_len: int):
if hard_condition: if hard_condition:
return ( return (
batch_size > 1 batch_size > 1
or (device in ["arc", "flex"] and qtype in [SYM_INT8, FP4]) or (device in ["arc"] and qtype in [SYM_INT8, FP4])
or (device in ["arc", "flex", "mtl"] and qtype in [FP8E4]) or (device in ["arc", "mtl"] and qtype in [FP8E4])
or (device in ["lnl"] and qtype in [SYM_INT4] and x.shape[1] % 512 == 0) or (device in ["lnl"] and qtype in [SYM_INT4] and x.shape[1] % 512 == 0)
or (device in ["bmg"] and qtype in [SYM_INT4, FP8E5]) or (device in ["bmg"] and qtype in [SYM_INT4, FP8E5])
) )
@ -603,7 +603,7 @@ class LowBitLinear(nn.Linear):
# empty cache before and after lm_head at first token when input > 1024 # empty cache before and after lm_head at first token when input > 1024
# on arc or IPEX_LLM_LOW_MEM is set to 1 at inference time. # on arc or IPEX_LLM_LOW_MEM is set to 1 at inference time.
if self.device is None: if self.device is None:
self.device = get_xpu_device_type(self.weight.data) self.device = get_xpu_device_name(self.weight.data.device)
self.low_memory_mode = \ self.low_memory_mode = \
self.low_memory_mode and \ self.low_memory_mode and \
(self.device == "arc" or os.environ.get("IPEX_LLM_LOW_MEM", None) == "1") (self.device == "arc" or os.environ.get("IPEX_LLM_LOW_MEM", None) == "1")
@ -782,7 +782,7 @@ class FP16Linear(nn.Linear):
if not self.use_esimd_kernel(x): if not self.use_esimd_kernel(x):
if ( if (
get_ipex_version() < "2.1.10+xpu" get_ipex_version() < "2.1.10+xpu"
or get_xpu_device_type(x) not in ["arc", "flex", "pvc"] or get_xpu_device_name(x.device) not in ["arc", "pvc"]
or self.disable_fp16_opt or self.disable_fp16_opt
): ):
if self.weight_type == 2: if self.weight_type == 2:
@ -848,7 +848,7 @@ class FP16Linear(nn.Linear):
return result.to(x.dtype) return result.to(x.dtype)
def use_esimd_kernel(self, x): def use_esimd_kernel(self, x):
gpu_type = get_xpu_device_type(x) gpu_type = get_xpu_device_name(x.device)
if self.disable_fp16_opt: if self.disable_fp16_opt:
return False return False
# esimd kernel can only be used for Arc and Flex # esimd kernel can only be used for Arc and Flex

View file

@ -1,589 +0,0 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/cohere/modeling_cohere.py
# coding=utf-8
# Copyright 2024 Cohere team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is based on the LLama model definition file in transformers
"""PyTorch Cohere model."""
import math
import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.utils.checkpoint
from typing import Optional, Tuple, List
from ipex_llm.transformers.models.utils import repeat_kv
from ipex_llm.transformers.models.utils import extend_kv_cache, append_kv_cache
from transformers.models.cohere.modeling_cohere import apply_rotary_pos_emb
from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_36
from ipex_llm.transformers.models.utils import use_decoding_fast_path
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp
from transformers.models.cohere.modeling_cohere import apply_rotary_pos_emb
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
from ipex_llm.transformers.kv import DynamicFp8Cache
from ipex_llm.transformers.models.utils import should_use_fuse_rope
from transformers.modeling_outputs import BaseModelOutputWithPast
from ipex_llm.utils.common import invalidInputError
try:
from transformers.cache_utils import Cache, DynamicCache
except ImportError:
Cache = Tuple[torch.Tensor]
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
def cohere_model_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
):
use_cache = use_cache if use_cache is not None \
else self.config.use_cache
if use_cache and use_quantize_kv_cache(self.layers[0].mlp.up_proj, input_ids):
if not isinstance(past_key_values, DynamicFp8Cache):
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
output_attentions = output_attentions if output_attentions is not None \
else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
invalidInputError(False,
"You cannot specify both input_ids and inputs_embeds at the same time")
if self.gradient_checkpointing and self.training and use_cache:
invalidInputError(False,
"`use_cache=True` is incompatible "
"with gradient checkpointing. Setting `use_cache=False`.")
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
past_seen_tokens = 0
if use_cache: # kept for BC (cache positions)
if not isinstance(past_key_values, Cache):
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_seen_tokens = past_key_values.get_seq_length()
if cache_position is None:
if isinstance(past_key_values, Cache):
invalidInputError(False, "cache_position is a required argument when using Cache.")
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(attention_mask,
inputs_embeds, cache_position, past_seen_tokens)
# embed positions
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
)
else:
# ipex-llm changes
curr_device = decoder_layer.input_layernorm.weight.device
if causal_mask is not None:
causal_mask = causal_mask.to(curr_device)
if position_ids is not None:
position_ids = position_ids.to(curr_device)
# ipex-llm changes end
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache,
all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def cohere_model_forward_4_41(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
):
use_cache = use_cache if use_cache is not None \
else self.config.use_cache
if use_cache and use_quantize_kv_cache(self.layers[0].mlp.up_proj, input_ids):
if not isinstance(past_key_values, DynamicFp8Cache):
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
output_attentions = output_attentions if output_attentions is not None \
else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
invalidInputError(False,
"You cannot specify both input_ids and inputs_embeds at the same time")
if self.gradient_checkpointing and self.training and use_cache:
invalidInputError(False,
"`use_cache=True` is incompatible "
"with gradient checkpointing. Setting `use_cache=False`.")
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
past_seen_tokens = 0
return_legacy_cache = False
# kept for BC (non `Cache` `past_key_values` inputs)
if use_cache and not isinstance(past_key_values, Cache):
return_legacy_cache = True
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
# embed positions
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
)
else:
# ipex-llm changes
curr_device = decoder_layer.input_layernorm.weight.device
if causal_mask is not None:
causal_mask = causal_mask.to(curr_device)
if position_ids is not None:
position_ids = position_ids.to(curr_device)
# ipex-llm changes end
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if return_legacy_cache:
next_cache = next_cache.to_legacy_cache()
if not return_dict:
return tuple(v for v in [hidden_states, next_cache,
all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def cohere_attention_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if use_quantize_kv_cache(self.q_proj, hidden_states):
forward_function = cohere_attention_forward_quantized
else:
forward_function = cohere_attention_forward_origin
return forward_function(
self=self,
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
def cohere_attention_forward_quantized(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
if self.use_qk_norm:
query_states = self.q_norm(query_states)
key_states = self.k_norm(key_states)
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
past_key_value = getattr(self, "past_key_value", past_key_value)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; position_ids needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx,
cache_kwargs, new_layout=True)
if q_len == 1 and query_states.device.type == 'xpu' and not self.training \
and not hidden_states.requires_grad:
import xe_addons
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, attention_mask)
attn_weights = None
else:
key_states, value_states = restore_fp8_kv_cache(key_states,
value_states, query_states.dtype)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights,
dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights,
p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
"`attn_output` should be of size "
f"{(bsz, self.num_heads, q_len, self.head_dim)},"
f" but is {attn_output.size()}")
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def cohere_attention_forward_origin(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
use_fuse_rope = should_use_fuse_rope(hidden_states, position_ids, self.training)
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx)
decoding_fast_path = use_decoding_fast_path(self.q_proj,
use_fuse_rope,
enough_kv_room,
bsz * q_len)
if decoding_fast_path:
hidden_states = hidden_states.view(1, -1)
cache_k = past_key_value.key_cache[self.layer_idx]
cache_v = past_key_value.value_cache[self.layer_idx]
kv_seq_len = cache_k.shape[-2]
import xe_linear
query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
self.q_proj.weight,
self.k_proj.weight,
self.v_proj.weight,
position_ids,
cache_k, cache_v,
self.q_proj.weight.qtype,
self.v_proj.weight.qtype,
kv_seq_len,
self.head_dim,
self.rotary_emb.base,)
kv_seq_len += 1
# update past_key_value's seem_tokens and kv caches.
if self.layer_idx == 0:
past_key_value._seen_tokens = kv_seq_len
past_key_value.key_cache[self.layer_idx] = key_states
past_key_value.value_cache[self.layer_idx] = value_states
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
if self.use_qk_norm:
query_states = self.q_norm(query_states)
key_states = self.k_norm(key_states)
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads,
self.head_dim).transpose(1, 2)
past_key_value = getattr(self, "past_key_value", past_key_value)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
invalidInputError(
False,
"The cache structure has changed since version v4.36. "
f"If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, "
"please make sure to initialize the attention class with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
if self.layer_idx == 0:
past_key_value._seen_tokens += key_states.shape[-2]
if len(past_key_value.key_cache) <= self.layer_idx:
past_key_value.key_cache.append(key_states)
past_key_value.value_cache.append(value_states)
else:
cache_k = past_key_value.key_cache[self.layer_idx]
cache_v = past_key_value.value_cache[self.layer_idx]
if not enough_kv_room:
# allocate new
new_c_k, new_c_v = extend_kv_cache(bsz,
self.num_key_value_heads, # Support GQA
self.head_dim,
cache_k.size(2),
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
dtype=cache_k.dtype,
device=device)
new_c_k[:] = cache_k
new_c_v[:] = cache_v
cache_k = new_c_k
cache_v = new_c_v
key_states, value_states = append_kv_cache(cache_k,
cache_v,
key_states,
value_states)
# update past_key_value
past_key_value.key_cache[self.layer_idx] = key_states
past_key_value.value_cache[self.layer_idx] = value_states
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
if not self.training and not hidden_states.requires_grad and \
use_flash_attention(query_states, key_states, attention_mask):
attn_output = F.scaled_dot_product_attention(query_states.to(device, dtype=torch.float16),
key_states.to(device, dtype=torch.float16),
value_states.to(device, dtype=torch.float16),
is_causal=True)
attn_weights = None
elif not self.training and not hidden_states.requires_grad and \
use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
import xe_addons
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
else:
causal_mask = None
attn_output = xe_addons.sdp(query_states, key_states, value_states, causal_mask)
attn_output = attn_output.view(query_states.shape)
attn_weights = None
else:
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights,
dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights,
p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
"`attn_output` should be of size "
f"{(bsz, self.num_heads, q_len, self.head_dim)},"
f" but is {attn_output.size()}")
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output.to(hidden_states.dtype), attn_weights, past_key_value

View file

@ -53,10 +53,10 @@ def siglip_attention_forward(
qkv = qkv.transpose(1, 2) qkv = qkv.transpose(1, 2)
query_states, key_states, value_states = qkv.chunk(3, dim=1) query_states, key_states, value_states = qkv.chunk(3, dim=1)
from ipex_llm.transformers.utils import get_xpu_device_type from ipex_llm.transformers.utils import get_xpu_device_name
if ( if (
self.head_dim == 72 self.head_dim == 72
and get_xpu_device_type(query_states) in ["arc", "flex"] and and get_xpu_device_name(query_states.device) == "arc" and
query_states.dtype in [torch.float, torch.half] query_states.dtype in [torch.float, torch.half]
): ):
n_heads, kv_length = query_states.size(1), key_states.size(2) n_heads, kv_length = query_states.size(1), key_states.size(2)

View file

@ -1,576 +0,0 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/mixtral/modeling_mixtral.py
# coding=utf-8
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Mixtral model."""
import math
from typing import Optional, Tuple, Union, List
from transformers.modeling_outputs import MoeModelOutputWithPast
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_attn_mask_utils import (
_prepare_4d_causal_attention_mask,
)
import torch
from torch import nn
import torch.nn.functional as F
from ipex_llm.ggml.quantize import ggml_tensor_qtype
from ipex_llm.utils.common import invalidInputError
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb, is_enough_kv_cache_room_4_36
from ipex_llm.transformers.models.utils import should_use_fuse_rope
from ipex_llm.transformers.models.utils import use_decoding_fast_path
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp
from ipex_llm.transformers.models.utils import mlp_fusion_check, SILU
from ipex_llm.transformers.low_bit_linear import IQ2_XXS
import os
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).
The hidden states go from (batch, num_key_value_heads, seqlen, head_dim)
to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads,
n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def mixtral_moeblock_forward(self,
hidden_states: torch.Tensor):
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
bs = hidden_states.shape[0]
# router_logits: (batch * sequence_length, n_experts)
router_logits = self.gate(hidden_states)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
if bs == 1:
selected_experts = selected_experts[0].cpu().tolist()
for idx in range(self.top_k):
exp_id = selected_experts[idx]
expert_layer = self.experts[exp_id]
weight = routing_weights[:, idx]
if idx == 0:
final_hidden_states = expert_layer(hidden_states, weight)
else:
final_hidden_states = final_hidden_states + expert_layer(hidden_states, weight)
elif bs < 256 and hidden_states.device.type == 'xpu':
final_hidden_states = torch.zeros((batch_size * sequence_length, hidden_dim),
dtype=hidden_states.dtype, device=hidden_states.device)
import xe_linear
indexes = xe_linear.get_moe_indexes(selected_experts.to(torch.int32).cpu(), 8)
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx_list = indexes[0][expert_idx]
top_x_list = indexes[1][expert_idx]
if len(idx_list) == 0:
continue
top_x = torch.tensor(top_x_list, dtype=torch.long, device=hidden_states.device)
current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
current_hidden_states = expert_layer(current_state,
routing_weights[top_x_list, idx_list, None])
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
else:
final_hidden_states = torch.zeros(
(batch_size * sequence_length, hidden_dim),
dtype=hidden_states.dtype,
device=hidden_states.device
)
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be sollicitated
expert_mask = torch.nn.functional.one_hot(selected_experts,
num_classes=self.num_experts).permute(2, 1, 0)
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
if top_x.shape[0] == 0:
continue
# in torch it is faster to index using lists than torch tensors
top_x_list = top_x.tolist()
idx_list = idx.tolist()
# Index the correct hidden states and compute the expert hidden state for
# the current expert. We need to make sure to multiply the output hidden
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
current_hidden_states = expert_layer(current_state,
routing_weights[top_x_list, idx_list, None])
# However `index_add_` only support torch tensors for indexing so we'll use
# the `top_x` tensor here.
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
def mixtral_attention_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor]=None,
position_ids: Optional[torch.LongTensor]=None,
past_key_value: Optional[Tuple[torch.Tensor]]=None,
output_attentions: bool=False,
use_cache: bool=False,
padding_mask: Optional[torch.Tensor]=None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
# for flash attention
original_dtype = hidden_states.dtype
use_fuse_rope = should_use_fuse_rope(hidden_states, position_ids, self.training)
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx)
decoding_fast_path = use_decoding_fast_path(self.q_proj,
use_fuse_rope,
enough_kv_room,
bsz * q_len)
if decoding_fast_path:
hidden_states = hidden_states.view(1, -1)
cache_k = past_key_value.key_cache[self.layer_idx]
cache_v = past_key_value.value_cache[self.layer_idx]
kv_seq_len = cache_k.shape[-2]
import xe_linear
query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
self.q_proj.weight,
self.k_proj.weight,
self.v_proj.weight,
position_ids,
cache_k, cache_v,
self.q_proj.weight.qtype,
self.v_proj.weight.qtype,
kv_seq_len,
self.head_dim,
self.rotary_emb.base,)
kv_seq_len += 1
# update past_key_value's seem_tokens and kv caches.
if self.layer_idx == 0:
past_key_value.seen_tokens = kv_seq_len
past_key_value.key_cache[self.layer_idx] = key_states
past_key_value.value_cache[self.layer_idx] = value_states
# diasble it for now as it will cause output change for unknown reason
# elif decoding_fast_path and self.q_proj.qtype == IQ2_XXS:
# # this path self.v_proj use q4_0
# hidden_states = hidden_states.view(1, -1)
# cache_k = past_key_value.key_cache[self.layer_idx]
# cache_v = past_key_value.value_cache[self.layer_idx]
# kv_seq_len = cache_k.shape[-2]
# import xe_linear
# query_states, key_states = xe_linear.forward_qk(hidden_states,
# self.q_proj.weight,
# self.k_proj.weight,
# position_ids,
# cache_k,
# self.q_proj.weight.qtype,
# kv_seq_len,
# self.head_dim,
# 10000)
# kv_seq_len += 1
# # update past_key_value's seem_tokens and kv caches.
# if self.layer_idx == 0:
# past_key_value.seen_tokens = kv_seq_len
# # update value_states
# value_states = self.v_proj(hidden_states)
# value_states = value_states.view(bsz, q_len,
# self.num_key_value_heads, self.head_dim).transpose(1, 2)
# new_size = (cache_v.size(0),
# cache_v.size(1),
# cache_v.size(2) + value_states.size(2),
# cache_v.size(3))
# new_cache_v = cache_v.as_strided(new_size, cache_v.stride(), storage_offset=0)
# new_cache_v[:, :, cache_v.size(2):cache_v.size(2)+value_states.size(2), :] = value_states
# past_key_value.key_cache[self.layer_idx] = key_states
# past_key_value.value_cache[self.layer_idx] = new_cache_v
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
invalidInputError(False,
"The cache structure has changed since version v4.36. "
f"If you are using {self.__class__.__name__} for "
"auto-regressive decodingwith k/v caching, please make sure "
"to initialize the attention class with a layer index.")
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
if use_fuse_rope:
import xe_addons
xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
query_states, key_states)
else:
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids, "mixtral")
if past_key_value is not None:
# update the number of seen tokens
if self.layer_idx == 0:
past_key_value.seen_tokens += key_states.shape[-2]
# reuse k, v, self_attention
# update `past_key_value` with `key_states` and `value_states` for layer `layer_idx`
if len(past_key_value.key_cache) <= self.layer_idx:
past_key_value.key_cache.append(key_states)
past_key_value.value_cache.append(value_states)
else:
cache_k = past_key_value.key_cache[self.layer_idx]
cache_v = past_key_value.value_cache[self.layer_idx]
if not enough_kv_room:
# allocate new
new_c_k, new_c_v = extend_kv_cache(bsz,
self.num_key_value_heads, # Support GQA
self.head_dim,
cache_k.size(2),
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
dtype=cache_k.dtype,
device=device)
new_c_k[:] = cache_k
new_c_v[:] = cache_v
cache_k = new_c_k
cache_v = new_c_v
key_states, value_states = append_kv_cache(cache_k,
cache_v,
key_states,
value_states)
# update past_key_value
past_key_value.key_cache[self.layer_idx] = key_states
past_key_value.value_cache[self.layer_idx] = value_states
if not self.training and not hidden_states.requires_grad:
fsdp_flag = use_flash_attention(query_states, key_states)
else:
fsdp_flag = False
if fsdp_flag:
attention_dtype = torch.float16 # use fp16 for flash attention
else:
attention_dtype = original_dtype
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups).to(device,
dtype=attention_dtype)
value_states = repeat_kv(value_states, self.num_key_value_groups).to(device,
dtype=attention_dtype)
if fsdp_flag:
attn_output = F.scaled_dot_product_attention(query_states.to(dtype=attention_dtype),
key_states,
value_states,
is_causal=True)
attn_weights = None
elif use_sdp(query_states.shape[2], key_states.shape[2], self.head_dim, query_states):
import xe_addons
attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask)
attn_output = attn_output.view(query_states.shape)
attn_weights = None
else:
attn_weights = torch.matmul(
query_states.to(key_states.dtype),
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
invalidInputError(
False,
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)},"
f" but is {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
invalidInputError(
False,
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)},"
f" but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.\
softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
invalidInputError(
False,
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)},"
f" but is {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def mixtral_mlp_forward(
self,
x: torch.Tensor,
routing_weights
) -> torch.Tensor:
qtype = getattr(self.w1, "qtype", None)
if mlp_fusion_check(x, qtype, self.training):
import xe_linear
return self.w2(xe_linear.mlp_forward_xpu(
x, self.w1.weight.data, self.w3.weight.data,
x.shape[0], x.shape[1], self.w1.out_len,
SILU, qtype,
)) * routing_weights
else:
current_hidden_states = self.act_fn(self.w1(x)) * self.w3(x)
current_hidden_states = self.w2(current_hidden_states)
return routing_weights * current_hidden_states
def mixtral_model_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MoeModelOutputWithPast]:
# to be compatible with transformers>=4.37.0
self._use_flash_attention_2 = self.config._attn_implementation == "flash_attention_2"
output_attentions = output_attentions if output_attentions is not None \
else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None
else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else
self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
invalidInputError(False, "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") # noqa
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
invalidInputError(False, "You have to specify either decoder_input_ids or decoder_inputs_embeds") # noqa
past_key_values_length = 0
if use_cache:
use_legacy_cache = not isinstance(past_key_values, Cache)
if use_legacy_cache:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_usable_length(seq_length)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length,
dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if attention_mask is not None and self._use_flash_attention_2 and use_cache:
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
if is_padding_right:
invalidInputError(
False,
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of Mixtral. Make sure to " # noqa
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
if self._use_flash_attention_2:
# 2d mask is passed through the layers
attention_mask = attention_mask \
if (attention_mask is not None and 0 in attention_mask) else None
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
sliding_window=self.config.sliding_window,
)
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." # noqa
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_router_logits = () if output_router_logits else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
output_router_logits,
use_cache,
)
else:
# bigdl-llm changes:
#
# Avoid moving `attention_mask`` and `position_ids`` to other devices multiple times.
#
# When the model is partitioned on two different devices using
# `accelerate`'s `dispatch``, a hook to move inputs to the correct device is
# added to each layer's `forward``, which will result in moving `attention_mask`
# and `position_ids`, which allocated on device:0, to other devices for each
# decoder layer not in device:0.
#
# To avoid this, we move `attention_mask` and `position_ids` to the device of
# the current layer before the forward call, so that the moving is only done once
# for each devices other than devie:0.
#
curr_device = decoder_layer.input_layernorm.weight.device
if attention_mask is not None:
attention_mask = attention_mask.to(curr_device)
if position_ids is not None:
position_ids = position_ids.to(curr_device)
# bigdl-llm changes end
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
output_router_logits=output_router_logits,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if output_router_logits:
all_router_logits += (layer_outputs[-1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = next_decoder_cache.to_legacy_cache() \
if use_legacy_cache else next_decoder_cache
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits] # noqa
if v is not None
)
return MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
router_logits=all_router_logits,
)

View file

@ -36,7 +36,7 @@ import math
import torch import torch
from typing import Optional from typing import Optional
from ipex_llm.transformers.utils import get_xpu_device_type from ipex_llm.transformers.utils import get_xpu_device_name
from ipex_llm.transformers.models.common import padding_qkv_hd from ipex_llm.transformers.models.common import padding_qkv_hd
from ipex_llm.transformers.models.common import scaled_dot_product_attention from ipex_llm.transformers.models.common import scaled_dot_product_attention
from diffusers.models.attention_processor import Attention from diffusers.models.attention_processor import Attention
@ -144,7 +144,7 @@ class AttnProcessor2_0:
def upcast_vae(self): def upcast_vae(self):
# workaround overflow and ipex's bugs # workaround overflow and ipex's bugs
if get_xpu_device_type(self.vae.post_quant_conv.weight) in ["arc", "flex", "pvc"]: if get_xpu_device_name(self.vae.post_quant_conv.weight.device) == "arc":
self.vae.to(torch.bfloat16) self.vae.to(torch.bfloat16)
else: else:
self.vae.decoder.up_blocks.to(torch.bfloat16) self.vae.decoder.up_blocks.to(torch.bfloat16)

View file

@ -19,7 +19,7 @@ import torch
import warnings import warnings
from ipex_llm.utils.common import invalidInputError from ipex_llm.utils.common import invalidInputError
from ipex_llm.ggml.quantize import ggml_tensor_qtype from ipex_llm.ggml.quantize import ggml_tensor_qtype
from ipex_llm.transformers.utils import get_ipex_version, get_xpu_device_type from ipex_llm.transformers.utils import get_ipex_version, get_xpu_device_name
from ipex_llm.transformers.low_bit_linear import SYM_INT4, SYM_INT8, FP8E5, IQ2_XXS, FP4, FP8E4,\ from ipex_llm.transformers.low_bit_linear import SYM_INT4, SYM_INT8, FP8E5, IQ2_XXS, FP4, FP8E4,\
FP6, ASYM_INT4 FP6, ASYM_INT4
@ -85,16 +85,14 @@ def use_quantize_kv_cache(linear: torch.nn.Module, x: torch.Tensor, kv_group: in
return os.environ["IPEX_LLM_QUANTIZE_KV_CACHE"] == "1" return os.environ["IPEX_LLM_QUANTIZE_KV_CACHE"] == "1"
elif os.environ.get("IPEX_LLM_LOW_MEM", None) is not None: elif os.environ.get("IPEX_LLM_LOW_MEM", None) is not None:
return os.environ["IPEX_LLM_LOW_MEM"] == "1" return os.environ["IPEX_LLM_LOW_MEM"] == "1"
elif linear.qtype in [ggml_tensor_qtype["fp16"], ggml_tensor_qtype["bf16"]]:
return False
else: else:
return x.device.type == 'xpu' and kv_cache_device_check(x, kv_group) \ device_name = get_xpu_device_name(x.device)
and hasattr(linear, "qtype") and \ return (
linear.qtype != ggml_tensor_qtype["fp16"] and linear.qtype != ggml_tensor_qtype["bf16"] device_name in ["mtl", "lnl", "arl"] and kv_group == 1
or device_name in ["arc", "bmg"] and x.size(0) > 1
)
def kv_cache_device_check(x: torch.Tensor, kv_group: int) -> bool:
return (get_xpu_device_type(x) in ["mtl", "lnl"] and kv_group <= 1) or \
((get_xpu_device_type(x) == "arc" or get_xpu_device_type(x) == "flex") and
1 < x.size(0) and x.size(0) <= 8)
def init_fp8_kv_cache(batch_size, num_heads, current_length, head_dim, device): def init_fp8_kv_cache(batch_size, num_heads, current_length, head_dim, device):
@ -226,57 +224,6 @@ def is_enough_kv_cache_room_4_31(past_key_value, seq_len=1):
(past_key_value[0].size(2) + seq_len) * past_key_value[0].size(3) (past_key_value[0].size(2) + seq_len) * past_key_value[0].size(3)
def use_flash_attention(query, key, attention_mask=None):
# here we support query's shape is always [batch_size, head_num, q_len, head_dim],
# key's shape is always [batch_size, head_num, k_len, head_dim]
invalidInputError(query.dim() == 4,
"Here query input of use_flash_attention should be [batch_size, "
"head_num, q_len, head_dim]")
invalidInputError(key.dim() == 4,
"Here key input of use_flash_attention should be [batch_size, "
"head_num, k_len, head_dim]")
bsz, _, q_len, _ = query.size()
k_len = key.size()[2]
# check whether ipex flash attention can be used
if q_len != k_len:
# now only use flash attention for first token
# as it seems have no performance benifit for rest token now
return False
if query.device.type != "xpu":
# ipex flash attention only support for xpu
return False
ipex_version = get_ipex_version()
if ipex_version <= "2.0.110+xpu":
# ipex flash attention is supported from ipex 2.1
return False
if not torch.xpu.has_xetla():
# ipex flash attention is only supported for xetla
# may update this later
return False
elif get_xpu_device_type(query) != "pvc":
return False
if query.dtype not in [torch.float32, torch.float16]:
# only use flash attention for fp32/fp16 input
return False
if bsz > 1:
# as flash attention doesn't support attn_mask in ipex 2.1,
# so it will cause output error for padded batch input
if attention_mask is None:
return True
else:
# TODO: below logic may change for different model
# attention mask shape : [bsz, 1, q_len, k_len]
if attention_mask[0].squeeze()[0, 0].item() != 0:
# first batch contains padding
# otherwise we suppose it should be a upper triangular matrix
# at the same time, the diagonal is also 0
return False
elif not attention_mask.equal(attention_mask[0].repeat(bsz, 1, 1, 1)):
# check whether mask of every batch is the same
return False
return True
def use_sdp(q_len, kv_len, head_dim, query_states): def use_sdp(q_len, kv_len, head_dim, query_states):
return ( return (
query_states.device.type == "xpu" query_states.device.type == "xpu"
@ -315,38 +262,16 @@ def mlp_fusion_check(x, qtype, training):
if training or x.requires_grad: if training or x.requires_grad:
return False return False
if qtype == FP6: if qtype == FP6:
device = get_xpu_device_type(x) device = get_xpu_device_name(x.device)
if device in ["mtl", "lnl"]: if device in ["mtl", "lnl", "arl"]:
return False
return True
def use_decoding_fast_path(proj,
use_fuse_rope,
enough_kv_room,
bs,
qtype_check=decoding_fast_path_qtype_check):
if proj is None:
return False
device = get_xpu_device_type(proj.weight)
if not qtype_check(proj):
return False
if not use_fuse_rope:
return False
if not enough_kv_room:
return False
if bs != 1:
return False
if device in ["uhd"]:
return False return False
return True return True
def use_xmx(x: torch.Tensor, qtype: int): def use_xmx(x: torch.Tensor, qtype: int):
device = get_xpu_device_type(x) device = get_xpu_device_name(x.device)
return ( return (
device in ["arc", "flex", "pvc"] device in ["arc", "pvc"]
and qtype in [SYM_INT4, SYM_INT8, FP8E4, FP8E5] and qtype in [SYM_INT4, SYM_INT8, FP8E4, FP8E5]
and ( and (
(device == "pvc" and 1 < x.size(0) <= 16) (device == "pvc" and 1 < x.size(0) <= 16)
@ -370,7 +295,7 @@ def fp16_fusion_check(proj, x, training):
return False return False
if x.requires_grad: if x.requires_grad:
return False return False
device_type = get_xpu_device_type(x) device_type = get_xpu_device_name(x.device)
if device_type != "pvc": if device_type != "pvc":
return False return False
return True return True
@ -439,7 +364,7 @@ def should_use_compresskv(x: torch.Tensor, prompt_len: int):
else: else:
if use_compress_kv is None: if use_compress_kv is None:
return ( return (
get_xpu_device_type(x) in ["mtl", "lnl"] get_xpu_device_name(x.device) in ["mtl", "lnl", "arl"]
and prompt_len >= 1800 and prompt_len >= 1800
and prompt_len <= 4500 and prompt_len <= 4500
) )

View file

@ -168,27 +168,12 @@ def get_ipex_version():
return _ipex_version return _ipex_version
def get_xpu_device_type(x): def get_xpu_device_name(device: torch.device):
if x.device.type != "xpu": if device.type != "xpu":
return x.device.type return device.type
name = torch.xpu.get_device_name(x.device.index)
if name.startswith("Intel(R) Arc(TM) A"):
return "arc"
elif name.startswith("Intel(R) Graphics [0xe20b]"):
return "bmg"
elif name.startswith("Intel(R) Arc(TM)"):
if 'V' in name:
return "lnl"
else: else:
return "mtl" import xe_linear
elif name.startswith("Intel(R) Data Center GPU Flex"): return xe_linear.get_xpu_device_name(device)
return "flex"
elif name.startswith("Intel(R) Data Center GPU Max"):
return "pvc"
elif name.startswith("Intel(R) UHD"):
return "uhd"
else:
return "others"
def load_imatrix_data(imatrix_file): def load_imatrix_data(imatrix_file):