remove falcon support and related UT (#12656)
This commit is contained in:
		
							parent
							
								
									fae73eee79
								
							
						
					
					
						commit
						ea65e4fecc
					
				
					 7 changed files with 2 additions and 1002 deletions
				
			
		| 
						 | 
				
			
			@ -1492,44 +1492,6 @@ def _optimize_post(model):
 | 
			
		|||
                        module.BloomAttention,
 | 
			
		||||
                        bloom_attention_forward
 | 
			
		||||
                        )
 | 
			
		||||
    elif "falcon" in model.config.model_type or "RefinedWeb" in model.config.model_type:
 | 
			
		||||
        if model.config.architectures is not None:
 | 
			
		||||
            modeling_module_name = model.__class__.__module__
 | 
			
		||||
            module = importlib.import_module(modeling_module_name)
 | 
			
		||||
            if "RWForCausalLM" in model.config.architectures:
 | 
			
		||||
                if model.config.hidden_size == 4544:
 | 
			
		||||
                    # falcon-7b need to check performance drop after kv cache support.
 | 
			
		||||
                    # from ipex_llm.transformers.models.falcon import rw_attention_forward_7b
 | 
			
		||||
                    # convert_forward(model,
 | 
			
		||||
                    #                 module.Attention,
 | 
			
		||||
                    #                 rw_attention_forward_7b
 | 
			
		||||
                    #                 )
 | 
			
		||||
                    pass
 | 
			
		||||
                else:
 | 
			
		||||
                    # falcon-40b
 | 
			
		||||
                    from ipex_llm.transformers.models.falcon import rw_attention_forward_40b
 | 
			
		||||
                    convert_forward(model,
 | 
			
		||||
                                    module.Attention,
 | 
			
		||||
                                    rw_attention_forward_40b
 | 
			
		||||
                                    )
 | 
			
		||||
            elif "FalconForCausalLM" in model.config.architectures:
 | 
			
		||||
                if model.config.hidden_size != 4544:
 | 
			
		||||
                    # falcon-180b and new falcon-40b
 | 
			
		||||
                    if version.parse(trans_version) >= version.parse("4.36.0"):
 | 
			
		||||
                        # transformers version >= 4.36.0
 | 
			
		||||
                        from ipex_llm.transformers.models.falcon import \
 | 
			
		||||
                            falcon_attention_forward_4_36
 | 
			
		||||
 | 
			
		||||
                        convert_forward(model,
 | 
			
		||||
                                        module.FalconAttention,
 | 
			
		||||
                                        falcon_attention_forward_4_36
 | 
			
		||||
                                        )
 | 
			
		||||
                    else:
 | 
			
		||||
                        from ipex_llm.transformers.models.falcon import falcon_attention_forward
 | 
			
		||||
                        convert_forward(model,
 | 
			
		||||
                                        module.FalconAttention,
 | 
			
		||||
                                        falcon_attention_forward
 | 
			
		||||
                                        )
 | 
			
		||||
    elif model.config.model_type == "baichuan":
 | 
			
		||||
        modeling_module_name = model.__class__.__module__
 | 
			
		||||
        module = importlib.import_module(modeling_module_name)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,829 +0,0 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
# Some parts of this file is adapted from
 | 
			
		||||
# https://github.com/huggingface/transformers/blob/v4.31.0/src/transformers/models/falcon/modeling_falcon.py
 | 
			
		||||
# which is licensed under Apache License 2.0:
 | 
			
		||||
#
 | 
			
		||||
# Copyright 2023 the Falcon authors and HuggingFace Inc. team.  All rights reserved.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
"""PyTorch Falcon model."""
 | 
			
		||||
 | 
			
		||||
import math
 | 
			
		||||
from typing import Optional, Tuple
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from torch.nn import functional as F
 | 
			
		||||
from ipex_llm.utils.common import invalidInputError
 | 
			
		||||
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
 | 
			
		||||
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Copied from transformers.models.llama.modeling_llama.rotate_half
 | 
			
		||||
def rotate_half(x):
 | 
			
		||||
    """Rotates half the hidden dims of the input."""
 | 
			
		||||
    x1 = x[..., : x.shape[-1] // 2]
 | 
			
		||||
    x2 = x[..., x.shape[-1] // 2:]
 | 
			
		||||
    return torch.cat((-x2, x1), dim=-1)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
 | 
			
		||||
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
 | 
			
		||||
    """Applies Rotary Position Embedding to the query and key tensors.
 | 
			
		||||
    Args:
 | 
			
		||||
        q (`torch.Tensor`): The query tensor.
 | 
			
		||||
        k (`torch.Tensor`): The key tensor.
 | 
			
		||||
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
 | 
			
		||||
        sin (`torch.Tensor`): The sine part of the rotary embedding.
 | 
			
		||||
        position_ids (`torch.Tensor`):
 | 
			
		||||
            The position indices of the tokens corresponding to the query and key tensors. For
 | 
			
		||||
            example, this can be used to pass offsetted position ids when working with a KV-cache.
 | 
			
		||||
        unsqueeze_dim (`int`, *optional*, defaults to 1):
 | 
			
		||||
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze
 | 
			
		||||
            cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the
 | 
			
		||||
            dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids]
 | 
			
		||||
            have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape
 | 
			
		||||
            [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
 | 
			
		||||
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k.
 | 
			
		||||
            Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim],
 | 
			
		||||
            then set unsqueeze_dim=2.
 | 
			
		||||
    Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary
 | 
			
		||||
        Position Embedding.
 | 
			
		||||
    """
 | 
			
		||||
    cos = cos[position_ids].unsqueeze(unsqueeze_dim)
 | 
			
		||||
    sin = sin[position_ids].unsqueeze(unsqueeze_dim)
 | 
			
		||||
    q_embed = (q * cos) + (rotate_half(q) * sin)
 | 
			
		||||
    k_embed = (k * cos) + (rotate_half(k) * sin)
 | 
			
		||||
    return q_embed, k_embed
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def rw_attention_forward_7b(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
    alibi: torch.Tensor,
 | 
			
		||||
    attention_mask: torch.Tensor,
 | 
			
		||||
    layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]]=None,
 | 
			
		||||
    head_mask: Optional[torch.Tensor]=None,
 | 
			
		||||
    use_cache: bool=False,
 | 
			
		||||
    output_attentions: bool=False,
 | 
			
		||||
):
 | 
			
		||||
    fused_qkv = self.query_key_value(hidden_states)  # [batch_size, seq_length, 3 x hidden_size]
 | 
			
		||||
 | 
			
		||||
    # 3 x [batch_size, seq_length, num_heads, head_dim]
 | 
			
		||||
    (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
 | 
			
		||||
 | 
			
		||||
    batch_size, q_length, _, _ = query_layer.shape
 | 
			
		||||
 | 
			
		||||
    query_layer = query_layer.transpose(1, 2).reshape(
 | 
			
		||||
        batch_size * self.num_heads,
 | 
			
		||||
        q_length,
 | 
			
		||||
        self.head_dim
 | 
			
		||||
    )
 | 
			
		||||
    key_layer = key_layer.transpose(1, 2).reshape(
 | 
			
		||||
        batch_size * self.num_kv,
 | 
			
		||||
        q_length,
 | 
			
		||||
        self.head_dim,
 | 
			
		||||
    )
 | 
			
		||||
    value_layer = value_layer.transpose(1, 2).reshape(
 | 
			
		||||
        batch_size * self.num_kv,
 | 
			
		||||
        q_length,
 | 
			
		||||
        self.head_dim
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # query_layer, key_layer = self.maybe_rotary(query_layer, key_layer)
 | 
			
		||||
    _, seq_len, _ = query_layer.shape
 | 
			
		||||
    if layer_past is not None:
 | 
			
		||||
        _, seq_len_past, _ = layer_past[0].shape
 | 
			
		||||
 | 
			
		||||
        seq_len = seq_len + seq_len_past
 | 
			
		||||
    query_layer, key_layer = self.maybe_rotary(query_layer, key_layer, seq_len)
 | 
			
		||||
 | 
			
		||||
    _, kv_length, _ = key_layer.shape
 | 
			
		||||
    if layer_past is not None:
 | 
			
		||||
        kv_length += layer_past[0].shape[-2]
 | 
			
		||||
    query_layer = query_layer.view(batch_size, self.num_heads, q_length, self.head_dim)
 | 
			
		||||
    key_layer = key_layer.view(batch_size, self.num_kv, q_length, self.head_dim)
 | 
			
		||||
    value_layer = value_layer.view(batch_size, self.num_kv, q_length, self.head_dim)
 | 
			
		||||
 | 
			
		||||
    device = hidden_states.device
 | 
			
		||||
    if layer_past is not None:
 | 
			
		||||
        # reuse k, v, self_attention
 | 
			
		||||
        cache_k = layer_past[0].view(batch_size, self.num_kv, -1, self.head_dim)
 | 
			
		||||
        cache_v = layer_past[1].view(batch_size, self.num_kv, -1, self.head_dim)
 | 
			
		||||
        if cache_k.stride()[1] < kv_length * cache_k.size(3):
 | 
			
		||||
            # allocate new
 | 
			
		||||
            new_cache_k, new_cache_v = extend_kv_cache(
 | 
			
		||||
                batch_size,
 | 
			
		||||
                self.num_kv,
 | 
			
		||||
                self.head_dim,
 | 
			
		||||
                cache_k.size(2),
 | 
			
		||||
                kv_length + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
			
		||||
                dtype=cache_k.dtype,
 | 
			
		||||
                device=device
 | 
			
		||||
            )
 | 
			
		||||
            new_cache_k[:] = cache_k
 | 
			
		||||
            new_cache_v[:] = cache_v
 | 
			
		||||
            cache_k = new_cache_k
 | 
			
		||||
            cache_v = new_cache_v
 | 
			
		||||
 | 
			
		||||
        key_layer, value_layer = append_kv_cache(cache_k, cache_v, key_layer, value_layer)
 | 
			
		||||
 | 
			
		||||
    elif use_cache:
 | 
			
		||||
        max_cache_length = kv_length + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
			
		||||
        new_key_states, new_value_states = init_kv_cache(
 | 
			
		||||
            batch_size,
 | 
			
		||||
            self.num_kv,
 | 
			
		||||
            self.head_dim,
 | 
			
		||||
            kv_length,
 | 
			
		||||
            max_cache_length,
 | 
			
		||||
            dtype=key_layer.dtype,
 | 
			
		||||
            device=device
 | 
			
		||||
        )
 | 
			
		||||
        new_key_states[:] = key_layer
 | 
			
		||||
        new_value_states[:] = value_layer
 | 
			
		||||
        key_layer = new_key_states
 | 
			
		||||
        value_layer = new_value_states
 | 
			
		||||
 | 
			
		||||
    query_layer = query_layer.view(batch_size*self.num_heads, -1, self.head_dim)
 | 
			
		||||
    key_layer = key_layer.view(batch_size*self.num_kv, -1, self.head_dim)
 | 
			
		||||
    value_layer = value_layer.view(batch_size*self.num_kv, -1, self.head_dim)
 | 
			
		||||
    _, kv_length, _ = key_layer.shape
 | 
			
		||||
    if use_cache is True:
 | 
			
		||||
        present = (key_layer, value_layer)
 | 
			
		||||
    else:
 | 
			
		||||
        present = None
 | 
			
		||||
 | 
			
		||||
    if alibi is None:
 | 
			
		||||
        query_layer_ = query_layer.reshape(batch_size, self.num_heads, -1, self.head_dim)
 | 
			
		||||
        key_layer_ = key_layer.reshape(batch_size, self.num_kv, -1, self.head_dim)
 | 
			
		||||
        value_layer_ = value_layer.reshape(batch_size, self.num_kv, -1, self.head_dim)
 | 
			
		||||
 | 
			
		||||
        # attn_output = F.scaled_dot_product_attention(
 | 
			
		||||
        #     query_layer_, key_layer_, value_layer_, None, 0.0, is_causal=True
 | 
			
		||||
        # )
 | 
			
		||||
        if layer_past is not None:
 | 
			
		||||
            L = query_layer_.shape[-2]
 | 
			
		||||
            S = key_layer_.shape[-2]
 | 
			
		||||
            attn_mask = torch.ones(L, S, dtype=torch.bool, device=query_layer_.device)
 | 
			
		||||
            attn_output = F.scaled_dot_product_attention(
 | 
			
		||||
                query_layer_, key_layer_, value_layer_, attn_mask, 0.0, is_causal=False
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = F.scaled_dot_product_attention(
 | 
			
		||||
                query_layer_, key_layer_, value_layer_, None, 0.0, is_causal=True
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        x = attn_output.view(batch_size, self.num_heads, q_length, self.head_dim)
 | 
			
		||||
        x = x.permute(0, 2, 1, 3)
 | 
			
		||||
        attn_output = x.reshape(batch_size, q_length, self.num_heads * self.head_dim)
 | 
			
		||||
 | 
			
		||||
        output_tensor = self.dense(attn_output)
 | 
			
		||||
 | 
			
		||||
        outputs = (output_tensor, present)
 | 
			
		||||
        if output_attentions:
 | 
			
		||||
            invalidInputError(False,
 | 
			
		||||
                              f"'output_attentions' are not supported yet")
 | 
			
		||||
        return outputs
 | 
			
		||||
    else:
 | 
			
		||||
        attention_mask_float = (attention_mask * 1.0) \
 | 
			
		||||
            .masked_fill(attention_mask, -1e9).to(torch.bfloat16)
 | 
			
		||||
        matmul_result = query_layer @ key_layer.transpose(-1, -2)
 | 
			
		||||
 | 
			
		||||
        # change view to [batch_size, num_heads, q_length, kv_length]
 | 
			
		||||
        attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length)
 | 
			
		||||
 | 
			
		||||
        # cast attention scores to fp32,
 | 
			
		||||
        # compute scaled softmax and cast back to initial dtype
 | 
			
		||||
        #  - [batch_size, num_heads, q_length, kv_length]
 | 
			
		||||
        input_dtype = attention_scores.dtype
 | 
			
		||||
        # `float16` has a minimum value of -65504.0,
 | 
			
		||||
        # whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
 | 
			
		||||
        if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
 | 
			
		||||
            attention_scores = attention_scores.to(torch.float32)
 | 
			
		||||
        # attn_weights = torch. \
 | 
			
		||||
        # masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
 | 
			
		||||
        attention_probs = F.softmax(
 | 
			
		||||
            (attention_scores + alibi) * self.inv_norm_factor + attention_mask_float,
 | 
			
		||||
            dim=-1,
 | 
			
		||||
            dtype=hidden_states.dtype,
 | 
			
		||||
        )
 | 
			
		||||
        # [batch_size, num_heads, q_length, kv_length]
 | 
			
		||||
        attention_probs = self.attention_dropout(attention_probs)
 | 
			
		||||
 | 
			
		||||
        if head_mask is not None:
 | 
			
		||||
            attention_probs = attention_probs * head_mask
 | 
			
		||||
 | 
			
		||||
        # change view [batch_size x num_heads, q_length, kv_length]
 | 
			
		||||
        attention_probs_reshaped = attention_probs.view(
 | 
			
		||||
            batch_size * self.num_heads,
 | 
			
		||||
            q_length,
 | 
			
		||||
            kv_length
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        # matmul: [batch_size * num_heads, q_length, head_dim]
 | 
			
		||||
        context_layer = attention_probs_reshaped @ value_layer
 | 
			
		||||
 | 
			
		||||
        # change view [batch_size, num_heads, q_length, head_dim]
 | 
			
		||||
        context_layer = self._merge_heads(context_layer)
 | 
			
		||||
 | 
			
		||||
        output_tensor = self.dense(context_layer)
 | 
			
		||||
 | 
			
		||||
        outputs = (output_tensor, present)
 | 
			
		||||
        if output_attentions:
 | 
			
		||||
            outputs += (attention_probs,)
 | 
			
		||||
 | 
			
		||||
        return outputs
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def rw_attention_forward_40b(
 | 
			
		||||
        self,
 | 
			
		||||
        hidden_states: torch.Tensor,
 | 
			
		||||
        alibi: torch.Tensor,
 | 
			
		||||
        attention_mask: torch.Tensor,
 | 
			
		||||
        layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]]=None,
 | 
			
		||||
        head_mask: Optional[torch.Tensor]=None,
 | 
			
		||||
        use_cache: bool=False,
 | 
			
		||||
        output_attentions: bool=False,
 | 
			
		||||
):
 | 
			
		||||
    # [batch_size, seq_length, 3 x hidden_size]
 | 
			
		||||
    fused_qkv = self.query_key_value(hidden_states)
 | 
			
		||||
 | 
			
		||||
    # 3 x [batch_size, seq_length, num_heads, head_dim]
 | 
			
		||||
    (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
 | 
			
		||||
 | 
			
		||||
    batch_size, q_length, _, _ = query_layer.shape
 | 
			
		||||
 | 
			
		||||
    query_layer = query_layer.transpose(1, 2).reshape(
 | 
			
		||||
        batch_size * self.num_heads,
 | 
			
		||||
        q_length,
 | 
			
		||||
        self.head_dim
 | 
			
		||||
    )
 | 
			
		||||
    key_layer = key_layer.transpose(1, 2).reshape(
 | 
			
		||||
        batch_size * self.num_heads,
 | 
			
		||||
        q_length,
 | 
			
		||||
        self.head_dim,
 | 
			
		||||
    )
 | 
			
		||||
    value_layer = value_layer.transpose(1, 2).reshape(
 | 
			
		||||
        batch_size * self.num_heads,
 | 
			
		||||
        q_length,
 | 
			
		||||
        self.head_dim
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # query_layer, key_layer = self.maybe_rotary(query_layer, key_layer)
 | 
			
		||||
    _, seq_len, _ = query_layer.shape
 | 
			
		||||
    if layer_past is not None:
 | 
			
		||||
        _, seq_len_past, _ = layer_past[0].shape
 | 
			
		||||
 | 
			
		||||
        seq_len = seq_len + seq_len_past
 | 
			
		||||
    query_layer, key_layer = self.maybe_rotary(query_layer, key_layer, seq_len)
 | 
			
		||||
 | 
			
		||||
    _, kv_length, _ = key_layer.shape
 | 
			
		||||
    if layer_past is not None:
 | 
			
		||||
        kv_length += layer_past[0].shape[-2]
 | 
			
		||||
    query_layer = query_layer.view(batch_size, self.num_heads, q_length, self.head_dim)
 | 
			
		||||
    key_layer = key_layer.view(batch_size, self.num_heads, q_length, self.head_dim)
 | 
			
		||||
    value_layer = value_layer.view(batch_size, self.num_heads, q_length, self.head_dim)
 | 
			
		||||
 | 
			
		||||
    device = hidden_states.device
 | 
			
		||||
    if layer_past is not None:
 | 
			
		||||
        # reuse k, v, self_attention
 | 
			
		||||
        cache_k = layer_past[0].view(batch_size, self.num_heads, -1, self.head_dim)
 | 
			
		||||
        cache_v = layer_past[1].view(batch_size, self.num_heads, -1, self.head_dim)
 | 
			
		||||
        if cache_k.stride()[1] < kv_length * cache_k.size(3):
 | 
			
		||||
            # allocate new
 | 
			
		||||
            new_cache_k, new_cache_v = extend_kv_cache(
 | 
			
		||||
                batch_size,
 | 
			
		||||
                self.num_heads,
 | 
			
		||||
                self.head_dim,
 | 
			
		||||
                cache_k.size(2),
 | 
			
		||||
                kv_length + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
			
		||||
                dtype=cache_k.dtype,
 | 
			
		||||
                device=device
 | 
			
		||||
            )
 | 
			
		||||
            new_cache_k[:] = cache_k
 | 
			
		||||
            new_cache_v[:] = cache_v
 | 
			
		||||
            cache_k = new_cache_k
 | 
			
		||||
            cache_v = new_cache_v
 | 
			
		||||
 | 
			
		||||
        key_layer, value_layer = append_kv_cache(cache_k, cache_v, key_layer, value_layer)
 | 
			
		||||
 | 
			
		||||
    elif use_cache:
 | 
			
		||||
        max_cache_length = kv_length + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
			
		||||
        new_key_states, new_value_states = init_kv_cache(
 | 
			
		||||
            batch_size,
 | 
			
		||||
            self.num_heads,
 | 
			
		||||
            self.head_dim,
 | 
			
		||||
            kv_length,
 | 
			
		||||
            max_cache_length,
 | 
			
		||||
            dtype=key_layer.dtype,
 | 
			
		||||
            device=device
 | 
			
		||||
        )
 | 
			
		||||
        new_key_states[:] = key_layer
 | 
			
		||||
        new_value_states[:] = value_layer
 | 
			
		||||
        key_layer = new_key_states
 | 
			
		||||
        value_layer = new_value_states
 | 
			
		||||
 | 
			
		||||
    query_layer = query_layer.view(batch_size*self.num_heads, -1, self.head_dim)
 | 
			
		||||
    key_layer = key_layer.view(batch_size*self.num_heads, -1, self.head_dim)
 | 
			
		||||
    value_layer = value_layer.view(batch_size*self.num_heads, -1, self.head_dim)
 | 
			
		||||
    _, kv_length, _ = key_layer.shape
 | 
			
		||||
    if use_cache is True:
 | 
			
		||||
        present = (key_layer, value_layer)
 | 
			
		||||
    else:
 | 
			
		||||
        present = None
 | 
			
		||||
 | 
			
		||||
    if alibi is None:
 | 
			
		||||
        query_layer_ = query_layer.reshape(batch_size, self.num_heads, -1, self.head_dim)
 | 
			
		||||
        key_layer_ = key_layer.reshape(batch_size, self.num_heads, -1, self.head_dim)
 | 
			
		||||
        value_layer_ = value_layer.reshape(batch_size, self.num_heads, -1, self.head_dim)
 | 
			
		||||
 | 
			
		||||
        # attn_output = F.scaled_dot_product_attention(
 | 
			
		||||
        #     query_layer_, key_layer_, value_layer_, None, 0.0, is_causal=True
 | 
			
		||||
        # )
 | 
			
		||||
        if present is not None:
 | 
			
		||||
            L = query_layer_.shape[-2]
 | 
			
		||||
            S = key_layer_.shape[-2]
 | 
			
		||||
            attn_mask = torch.ones(L, S, dtype=torch.bool, device=query_layer_.device)
 | 
			
		||||
            attn_output = F.scaled_dot_product_attention(
 | 
			
		||||
                query_layer_, key_layer_, value_layer_, attn_mask, 0.0, is_causal=False
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = F.scaled_dot_product_attention(
 | 
			
		||||
                query_layer_, key_layer_, value_layer_, None, 0.0, is_causal=True
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        x = attn_output.view(batch_size, self.num_heads, q_length, self.head_dim)
 | 
			
		||||
        x = x.permute(0, 2, 1, 3)
 | 
			
		||||
        attn_output = x.reshape(batch_size, q_length, self.num_heads * self.head_dim)
 | 
			
		||||
 | 
			
		||||
        output_tensor = self.dense(attn_output)
 | 
			
		||||
 | 
			
		||||
        outputs = (output_tensor, present)
 | 
			
		||||
        if output_attentions:
 | 
			
		||||
            invalidInputError(False,
 | 
			
		||||
                              f"'output_attentions' are not supported yet")
 | 
			
		||||
        return outputs
 | 
			
		||||
    else:
 | 
			
		||||
        attention_mask_float = (attention_mask * 1.0) \
 | 
			
		||||
            .masked_fill(attention_mask, -1e9).to(torch.bfloat16)
 | 
			
		||||
        matmul_result = query_layer @ key_layer.transpose(-1, -2)
 | 
			
		||||
 | 
			
		||||
        # change view to [batch_size, num_heads, q_length, kv_length]
 | 
			
		||||
        attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length)
 | 
			
		||||
 | 
			
		||||
        # cast attention scores to fp32,
 | 
			
		||||
        # compute scaled softmax and cast back to initial dtype
 | 
			
		||||
        # - [batch_size, num_heads, q_length, kv_length]
 | 
			
		||||
        input_dtype = attention_scores.dtype
 | 
			
		||||
        # `float16` has a minimum value of -65504.0,
 | 
			
		||||
        # whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
 | 
			
		||||
        if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
 | 
			
		||||
            attention_scores = attention_scores.to(torch.float32)
 | 
			
		||||
        # attn_weights = torch \
 | 
			
		||||
        # .masked_fill(
 | 
			
		||||
        # attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
 | 
			
		||||
        attention_probs = F.softmax(
 | 
			
		||||
            (attention_scores + alibi.view(batch_size, self.num_heads, 1, -1))
 | 
			
		||||
            * self.inv_norm_factor + attention_mask_float,
 | 
			
		||||
            dim=-1,
 | 
			
		||||
            dtype=hidden_states.dtype,
 | 
			
		||||
        )
 | 
			
		||||
        # [batch_size, num_heads, q_length, kv_length]
 | 
			
		||||
        attention_probs = self.attention_dropout(attention_probs)
 | 
			
		||||
 | 
			
		||||
        if head_mask is not None:
 | 
			
		||||
            attention_probs = attention_probs * head_mask
 | 
			
		||||
 | 
			
		||||
        # change view [batch_size x num_heads, q_length, kv_length]
 | 
			
		||||
        attention_probs_reshaped = attention_probs.view(
 | 
			
		||||
            batch_size * self.num_heads,
 | 
			
		||||
            q_length,
 | 
			
		||||
            kv_length
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        # matmul: [batch_size * num_heads, q_length, head_dim]
 | 
			
		||||
        context_layer = attention_probs_reshaped @ value_layer
 | 
			
		||||
 | 
			
		||||
        # change view [batch_size, num_heads, q_length, head_dim]
 | 
			
		||||
        context_layer = self._merge_heads(context_layer)
 | 
			
		||||
 | 
			
		||||
        output_tensor = self.dense(context_layer)
 | 
			
		||||
 | 
			
		||||
        outputs = (output_tensor, present)
 | 
			
		||||
        if output_attentions:
 | 
			
		||||
            outputs += (attention_probs,)
 | 
			
		||||
        return outputs
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def falcon_attention_forward(
 | 
			
		||||
        self,
 | 
			
		||||
        hidden_states: torch.Tensor,
 | 
			
		||||
        alibi: Optional[torch.Tensor],
 | 
			
		||||
        attention_mask: torch.Tensor,
 | 
			
		||||
        layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]]=None,
 | 
			
		||||
        head_mask: Optional[torch.Tensor]=None,
 | 
			
		||||
        use_cache: bool=False,
 | 
			
		||||
        output_attentions: bool=False,
 | 
			
		||||
):
 | 
			
		||||
    # [batch_size, seq_length, 3 x hidden_size]
 | 
			
		||||
    fused_qkv = self.query_key_value(hidden_states)
 | 
			
		||||
    num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads
 | 
			
		||||
    # 3 x [batch_size, seq_length, num_heads, head_dim]
 | 
			
		||||
    (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
 | 
			
		||||
 | 
			
		||||
    batch_size, query_length, _, _ = query_layer.shape
 | 
			
		||||
 | 
			
		||||
    query_layer = query_layer.transpose(1, 2).reshape(
 | 
			
		||||
        batch_size * self.num_heads,
 | 
			
		||||
        query_length,
 | 
			
		||||
        self.head_dim
 | 
			
		||||
    )
 | 
			
		||||
    key_layer = key_layer.transpose(1, 2).reshape(
 | 
			
		||||
        batch_size * num_kv_heads,
 | 
			
		||||
        query_length,
 | 
			
		||||
        self.head_dim,
 | 
			
		||||
    )
 | 
			
		||||
    value_layer = value_layer.transpose(1, 2).reshape(
 | 
			
		||||
        batch_size * num_kv_heads,
 | 
			
		||||
        query_length,
 | 
			
		||||
        self.head_dim
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    past_kv_length = 0 if layer_past is None else layer_past[0].shape[1]
 | 
			
		||||
    query_layer, key_layer = self.maybe_rotary(query_layer, key_layer, past_kv_length)
 | 
			
		||||
 | 
			
		||||
    _, kv_length, _ = key_layer.shape
 | 
			
		||||
    if layer_past is not None:
 | 
			
		||||
        kv_length += layer_past[0].shape[-2]
 | 
			
		||||
    query_layer = query_layer.view(batch_size, self.num_heads, query_length, self.head_dim)
 | 
			
		||||
    key_layer = key_layer.view(batch_size, num_kv_heads, query_length, self.head_dim)
 | 
			
		||||
    value_layer = value_layer.view(batch_size, num_kv_heads, query_length, self.head_dim)
 | 
			
		||||
    device = hidden_states.device
 | 
			
		||||
    if layer_past is not None:
 | 
			
		||||
        # reuse k, v, self_attention
 | 
			
		||||
        cache_k = layer_past[0].view(batch_size, num_kv_heads, -1, self.head_dim)
 | 
			
		||||
        cache_v = layer_past[1].view(batch_size, num_kv_heads, -1, self.head_dim)
 | 
			
		||||
        if cache_k.stride()[1] < kv_length * cache_k.size(3):
 | 
			
		||||
            # allocate new
 | 
			
		||||
            new_cache_k, new_cache_v = extend_kv_cache(
 | 
			
		||||
                batch_size,
 | 
			
		||||
                num_kv_heads,
 | 
			
		||||
                self.head_dim,
 | 
			
		||||
                cache_k.size(2),
 | 
			
		||||
                kv_length + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
			
		||||
                dtype=cache_k.dtype,
 | 
			
		||||
                device=device
 | 
			
		||||
            )
 | 
			
		||||
            new_cache_k[:] = cache_k
 | 
			
		||||
            new_cache_v[:] = cache_v
 | 
			
		||||
            cache_k = new_cache_k
 | 
			
		||||
            cache_v = new_cache_v
 | 
			
		||||
 | 
			
		||||
        key_layer, value_layer = append_kv_cache(cache_k, cache_v, key_layer, value_layer)
 | 
			
		||||
 | 
			
		||||
    elif use_cache:
 | 
			
		||||
        max_cache_length = kv_length + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
			
		||||
        new_key_states, new_value_states = init_kv_cache(
 | 
			
		||||
            batch_size,
 | 
			
		||||
            num_kv_heads,
 | 
			
		||||
            self.head_dim,
 | 
			
		||||
            kv_length,
 | 
			
		||||
            max_cache_length,
 | 
			
		||||
            dtype=key_layer.dtype,
 | 
			
		||||
            device=device
 | 
			
		||||
        )
 | 
			
		||||
        new_key_states[:] = key_layer
 | 
			
		||||
        new_value_states[:] = value_layer
 | 
			
		||||
        key_layer = new_key_states
 | 
			
		||||
        value_layer = new_value_states
 | 
			
		||||
 | 
			
		||||
    query_layer = query_layer.view(batch_size * self.num_heads, -1, self.head_dim)
 | 
			
		||||
    key_layer = key_layer.view(batch_size * num_kv_heads, -1, self.head_dim)
 | 
			
		||||
    value_layer = value_layer.view(batch_size * num_kv_heads, -1, self.head_dim)
 | 
			
		||||
    _, kv_length, _ = key_layer.shape
 | 
			
		||||
    if use_cache:
 | 
			
		||||
        present = (key_layer, value_layer)
 | 
			
		||||
    else:
 | 
			
		||||
        present = None
 | 
			
		||||
 | 
			
		||||
    attention_mask_float = (attention_mask * 1.0) \
 | 
			
		||||
        .masked_fill(attention_mask, float("-1e9")).to(query_layer.dtype)
 | 
			
		||||
 | 
			
		||||
    query_layer_ = query_layer.reshape(batch_size, self.num_heads, -1, self.head_dim)
 | 
			
		||||
    key_layer_ = key_layer.reshape(batch_size, num_kv_heads, -1, self.head_dim)
 | 
			
		||||
    value_layer_ = value_layer.reshape(batch_size, num_kv_heads, -1, self.head_dim)
 | 
			
		||||
 | 
			
		||||
    if alibi is None:
 | 
			
		||||
        if output_attentions:
 | 
			
		||||
            # F.scaled_dot_product_attention doesn't return the attention weights, so we have
 | 
			
		||||
            # to do it by hand if we want them
 | 
			
		||||
            attention_scores = query_layer_ @ key_layer_.transpose(-1, -2)
 | 
			
		||||
            attention_scores /= math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
            attention_scores = F.softmax(
 | 
			
		||||
                attention_scores + attention_mask_float, dim=-1, dtype=hidden_states.dtype
 | 
			
		||||
            )
 | 
			
		||||
            attn_output = attention_scores @ value_layer_
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = F.scaled_dot_product_attention(
 | 
			
		||||
                query_layer_,
 | 
			
		||||
                key_layer_,
 | 
			
		||||
                value_layer_,
 | 
			
		||||
                attention_mask_float,
 | 
			
		||||
                0.0,
 | 
			
		||||
                is_causal=False
 | 
			
		||||
            )
 | 
			
		||||
            attention_scores = None
 | 
			
		||||
 | 
			
		||||
        attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim)
 | 
			
		||||
        attn_output = attn_output.permute(0, 2, 1, 3)
 | 
			
		||||
        attn_output = attn_output.reshape(
 | 
			
		||||
            batch_size,
 | 
			
		||||
            query_length,
 | 
			
		||||
            self.num_heads * self.head_dim
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        output_tensor = self.dense(attn_output)
 | 
			
		||||
 | 
			
		||||
        if output_attentions:
 | 
			
		||||
            return output_tensor, present, attention_scores
 | 
			
		||||
        else:
 | 
			
		||||
            return output_tensor, present
 | 
			
		||||
 | 
			
		||||
    else:
 | 
			
		||||
        matmul_result = query_layer_ @ key_layer_.transpose(-1, -2)
 | 
			
		||||
 | 
			
		||||
        # change view to [batch_size, num_heads, q_length, kv_length]
 | 
			
		||||
        attention_scores = matmul_result.view(
 | 
			
		||||
            batch_size,
 | 
			
		||||
            self.num_heads,
 | 
			
		||||
            query_length,
 | 
			
		||||
            kv_length
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        # cast attention scores to fp32,
 | 
			
		||||
        # compute scaled softmax and cast back to initial dtype
 | 
			
		||||
        # - [batch_size, num_heads, q_length, kv_length]
 | 
			
		||||
        input_dtype = attention_scores.dtype
 | 
			
		||||
        # `float16` has a minimum value of -65504.0,
 | 
			
		||||
        # whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
 | 
			
		||||
        if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
 | 
			
		||||
            attention_scores = attention_scores.to(torch.float32)
 | 
			
		||||
        # Matt (HF) note: We could possibly use F.scaled_dot_product_attention here too, by
 | 
			
		||||
        # adding (alibi * self.inv_norm_factor) to attention_mask_float.
 | 
			
		||||
        # I think this would be mathematically
 | 
			
		||||
        # equivalent and more performant, but there might be a numerical difference.
 | 
			
		||||
        # If you're reading this
 | 
			
		||||
        # and you'd like to experiment and maybe file a PR, feel free!
 | 
			
		||||
        attention_logits = attention_scores + alibi.view(batch_size, self.num_heads, 1, -1)
 | 
			
		||||
        attention_logits *= self.inv_norm_factor
 | 
			
		||||
        attention_probs = F.softmax(attention_logits + attention_mask_float, dim=-1,
 | 
			
		||||
                                    dtype=hidden_states.dtype)
 | 
			
		||||
        # [batch_size, num_heads, q_length, kv_length]
 | 
			
		||||
        attention_probs = self.attention_dropout(attention_probs)
 | 
			
		||||
 | 
			
		||||
        if head_mask is not None:
 | 
			
		||||
            attention_probs = attention_probs * head_mask
 | 
			
		||||
 | 
			
		||||
        # change view [batch_size, num_heads, q_length, kv_length]
 | 
			
		||||
        attention_probs_reshaped = attention_probs.view(
 | 
			
		||||
            batch_size,
 | 
			
		||||
            self.num_heads,
 | 
			
		||||
            query_length,
 | 
			
		||||
            kv_length
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        # matmul: [batch_size * num_heads, q_length, head_dim]
 | 
			
		||||
        context_layer = (attention_probs_reshaped @ value_layer_).flatten(0, 1)
 | 
			
		||||
 | 
			
		||||
        # change view [batch_size, q_length, num_heads * head_dim]
 | 
			
		||||
        context_layer = self._merge_heads(context_layer)
 | 
			
		||||
 | 
			
		||||
        output_tensor = self.dense(context_layer)
 | 
			
		||||
 | 
			
		||||
        if output_attentions:
 | 
			
		||||
            return output_tensor, present, attention_probs
 | 
			
		||||
        else:
 | 
			
		||||
            return output_tensor, present
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def falcon_attention_forward_4_36(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
    alibi: Optional[torch.Tensor],
 | 
			
		||||
    attention_mask: torch.Tensor,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor]=None,
 | 
			
		||||
    layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]]=None,
 | 
			
		||||
    head_mask: Optional[torch.Tensor]=None,
 | 
			
		||||
    use_cache: bool=False,
 | 
			
		||||
    output_attentions: bool=False,
 | 
			
		||||
    **kwargs,
 | 
			
		||||
):
 | 
			
		||||
    """ based on transformers==4.36.0
 | 
			
		||||
        https://github.com/huggingface/transformers/blob/v4.36.0/src/transformers/models/falcon/modeling_falcon.py
 | 
			
		||||
    """
 | 
			
		||||
    if "padding_mask" in kwargs:
 | 
			
		||||
        warnings.warn(
 | 
			
		||||
            "Passing `padding_mask` is deprecated and will be removed in v4.37. \
 | 
			
		||||
                Please make sure use `attention_mask` instead.`"
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    fused_qkv = self.query_key_value(hidden_states)  # [batch_size, seq_length, 3 x hidden_size]
 | 
			
		||||
    num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads
 | 
			
		||||
    # 3 x [batch_size, seq_length, num_heads, head_dim]
 | 
			
		||||
    (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
 | 
			
		||||
 | 
			
		||||
    batch_size, query_length, _, _ = query_layer.shape
 | 
			
		||||
 | 
			
		||||
    query_layer = query_layer.transpose(1, 2).reshape(
 | 
			
		||||
        batch_size, self.num_heads, query_length, self.head_dim)
 | 
			
		||||
    key_layer = key_layer.transpose(1, 2).reshape(
 | 
			
		||||
        batch_size, num_kv_heads, query_length, self.head_dim)
 | 
			
		||||
    value_layer = value_layer.transpose(1, 2).reshape(
 | 
			
		||||
        batch_size, num_kv_heads, query_length, self.head_dim)
 | 
			
		||||
 | 
			
		||||
    kv_seq_len = key_layer.shape[-2]
 | 
			
		||||
    device = hidden_states.device
 | 
			
		||||
 | 
			
		||||
    if layer_past is not None:
 | 
			
		||||
        kv_seq_len += layer_past[0].shape[-2]
 | 
			
		||||
 | 
			
		||||
    if alibi is None:
 | 
			
		||||
        cos, sin = self.rotary_emb(value_layer, seq_len=kv_seq_len)
 | 
			
		||||
        query_layer, key_layer = apply_rotary_pos_emb(
 | 
			
		||||
            query_layer, key_layer, cos, sin, position_ids)
 | 
			
		||||
 | 
			
		||||
    if layer_past is not None:
 | 
			
		||||
        # reuse k, v, self_attention
 | 
			
		||||
        cache_k = layer_past[0].view(batch_size, self.num_heads, -1, self.head_dim)
 | 
			
		||||
        cache_v = layer_past[1].view(batch_size, self.num_heads, -1, self.head_dim)
 | 
			
		||||
        if cache_k.stride()[1] <= cache_k.size(2) * cache_k.size(3):
 | 
			
		||||
            # allocate new
 | 
			
		||||
            new_cache_k, new_cache_v = extend_kv_cache(
 | 
			
		||||
                batch_size,
 | 
			
		||||
                self.num_heads,
 | 
			
		||||
                self.head_dim,
 | 
			
		||||
                cache_k.size(2),
 | 
			
		||||
                kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
			
		||||
                dtype=cache_k.dtype,
 | 
			
		||||
                device=device
 | 
			
		||||
            )
 | 
			
		||||
            new_cache_k[:] = cache_k
 | 
			
		||||
            new_cache_v[:] = cache_v
 | 
			
		||||
            cache_k = new_cache_k
 | 
			
		||||
            cache_v = new_cache_v
 | 
			
		||||
 | 
			
		||||
        key_layer, value_layer = append_kv_cache(cache_k, cache_v, key_layer, value_layer)
 | 
			
		||||
 | 
			
		||||
    elif use_cache:
 | 
			
		||||
        max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
			
		||||
        new_key_states, new_value_states = init_kv_cache(
 | 
			
		||||
            batch_size,
 | 
			
		||||
            self.num_heads,
 | 
			
		||||
            self.head_dim,
 | 
			
		||||
            kv_seq_len,
 | 
			
		||||
            max_cache_length,
 | 
			
		||||
            dtype=key_layer.dtype,
 | 
			
		||||
            device=device
 | 
			
		||||
        )
 | 
			
		||||
        new_key_states[:] = key_layer
 | 
			
		||||
        new_value_states[:] = value_layer
 | 
			
		||||
        key_layer = new_key_states
 | 
			
		||||
        value_layer = new_value_states
 | 
			
		||||
 | 
			
		||||
    query_layer = query_layer.view(batch_size, self.num_heads, -1, self.head_dim)
 | 
			
		||||
    key_layer = key_layer.view(batch_size, self.num_heads, -1, self.head_dim)
 | 
			
		||||
    value_layer = value_layer.view(batch_size, self.num_heads, -1, self.head_dim)
 | 
			
		||||
 | 
			
		||||
    kv_length = key_layer.shape[-2]
 | 
			
		||||
    if use_cache:
 | 
			
		||||
        present = (key_layer, value_layer)
 | 
			
		||||
    else:
 | 
			
		||||
        present = None
 | 
			
		||||
 | 
			
		||||
    # SDPA with memory-efficient backend is currently (torch==2.1.2)
 | 
			
		||||
    # bugged with non-contiguous inputs with custom attn_mask,
 | 
			
		||||
    # Reference: https://github.com/pytorch/pytorch/issues/112577.
 | 
			
		||||
    if query_layer.device.type == "cuda" and attention_mask is not None:
 | 
			
		||||
        query_layer = query_layer.contiguous()
 | 
			
		||||
        key_layer = key_layer.contiguous()
 | 
			
		||||
        value_layer = value_layer.contiguous()
 | 
			
		||||
 | 
			
		||||
    if alibi is None:
 | 
			
		||||
        if self._use_sdpa and not output_attentions:
 | 
			
		||||
            attn_output = F.scaled_dot_product_attention(
 | 
			
		||||
                query_layer,
 | 
			
		||||
                key_layer,
 | 
			
		||||
                value_layer,
 | 
			
		||||
                attention_mask,
 | 
			
		||||
                0.0,
 | 
			
		||||
                # The query_length > 1 is necessary to match with
 | 
			
		||||
                # AttentionMaskConverter.to_causal_4d that does not create a causal mask in case
 | 
			
		||||
                # query_length == 1.
 | 
			
		||||
                is_causal=self.is_causal and attention_mask is None and query_length > 1,
 | 
			
		||||
            )
 | 
			
		||||
            attention_scores = None
 | 
			
		||||
        else:
 | 
			
		||||
            attention_scores = query_layer @ key_layer.transpose(-1, -2)
 | 
			
		||||
            attention_scores /= math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
            attention_scores = F.softmax(
 | 
			
		||||
                attention_scores + attention_mask, dim=-1, dtype=hidden_states.dtype)
 | 
			
		||||
            # It is unclear why neither dropout nor head_mask is applied here
 | 
			
		||||
            # (while it is with alibi).
 | 
			
		||||
            attn_output = attention_scores @ value_layer
 | 
			
		||||
 | 
			
		||||
        attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim)
 | 
			
		||||
        attn_output = attn_output.permute(0, 2, 1, 3)
 | 
			
		||||
        attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)
 | 
			
		||||
 | 
			
		||||
        attn_output = self.dense(attn_output)
 | 
			
		||||
 | 
			
		||||
        if output_attentions:
 | 
			
		||||
            return attn_output, present, attention_scores
 | 
			
		||||
        else:
 | 
			
		||||
            return attn_output, present
 | 
			
		||||
 | 
			
		||||
    else:
 | 
			
		||||
        if self._use_sdpa and not output_attentions and head_mask is None:
 | 
			
		||||
            attn_output = F.scaled_dot_product_attention(
 | 
			
		||||
                query_layer,
 | 
			
		||||
                key_layer,
 | 
			
		||||
                value_layer,
 | 
			
		||||
                attn_mask=attention_mask,
 | 
			
		||||
                dropout_p=self.attention_dropout.p if self.training else 0.0,
 | 
			
		||||
                is_causal=self.is_causal and attention_mask is None and query_length > 1,
 | 
			
		||||
            )
 | 
			
		||||
            attn_output = attn_output.transpose(1, 2)
 | 
			
		||||
            attn_output = attn_output.reshape(
 | 
			
		||||
                batch_size, query_length, self.num_heads * self.head_dim)
 | 
			
		||||
 | 
			
		||||
            attn_output = self.dense(attn_output)
 | 
			
		||||
        else:
 | 
			
		||||
            matmul_result = query_layer @ key_layer.transpose(-1, -2)
 | 
			
		||||
 | 
			
		||||
            # change view to [batch_size, num_heads, q_length, kv_length]
 | 
			
		||||
            attention_scores = matmul_result.view(
 | 
			
		||||
                batch_size, self.num_heads, query_length, kv_length)
 | 
			
		||||
 | 
			
		||||
            # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype -
 | 
			
		||||
            # [batch_size, num_heads, q_length, kv_length]
 | 
			
		||||
            input_dtype = attention_scores.dtype
 | 
			
		||||
            # `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a
 | 
			
		||||
            # minimum value of `-3.4e+38`
 | 
			
		||||
            if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
 | 
			
		||||
                attention_scores = attention_scores.to(torch.float32)
 | 
			
		||||
 | 
			
		||||
            attention_logits = attention_scores + alibi.view(batch_size, self.num_heads, 1, -1)
 | 
			
		||||
            attention_logits *= self.inv_norm_factor
 | 
			
		||||
            attention_probs = F.softmax(
 | 
			
		||||
                attention_logits + attention_mask, dim=-1, dtype=hidden_states.dtype)
 | 
			
		||||
            # [batch_size, num_heads, q_length, kv_length]
 | 
			
		||||
            attention_probs = self.attention_dropout(attention_probs)
 | 
			
		||||
 | 
			
		||||
            if head_mask is not None:
 | 
			
		||||
                attention_probs = attention_probs * head_mask
 | 
			
		||||
 | 
			
		||||
            # change view [batch_size, num_heads, q_length, kv_length]
 | 
			
		||||
            attention_probs_reshaped = attention_probs.view(
 | 
			
		||||
                batch_size, self.num_heads, query_length, kv_length)
 | 
			
		||||
 | 
			
		||||
            # matmul: [batch_size * num_heads, q_length, head_dim]
 | 
			
		||||
            attn_output = (attention_probs_reshaped @ value_layer).flatten(0, 1)
 | 
			
		||||
 | 
			
		||||
            # change view [batch_size, q_length, num_heads * head_dim]
 | 
			
		||||
            attn_output = self._merge_heads(attn_output)
 | 
			
		||||
 | 
			
		||||
            attn_output = self.dense(attn_output)
 | 
			
		||||
 | 
			
		||||
        if output_attentions:
 | 
			
		||||
            return attn_output, present, attention_probs
 | 
			
		||||
        else:
 | 
			
		||||
            return attn_output, present
 | 
			
		||||
| 
						 | 
				
			
			@ -32,7 +32,6 @@ print(f'Running on {device}')
 | 
			
		|||
@pytest.mark.parametrize('Model, Tokenizer, model_path',[
 | 
			
		||||
    (AutoModelForCausalLM, LlamaTokenizer, os.environ.get('LLAMA2_7B_ORIGIN_PATH')),
 | 
			
		||||
    (AutoModel, AutoTokenizer, os.environ.get('CHATGLM2_6B_ORIGIN_PATH')),
 | 
			
		||||
    (AutoModelForCausalLM, AutoTokenizer, os.environ.get('FALCON_7B_ORIGIN_PATH')),
 | 
			
		||||
    (AutoModelForCausalLM, AutoTokenizer, os.environ.get('MPT_7B_ORIGIN_PATH')),
 | 
			
		||||
    # (AutoModelForCausalLM, AutoTokenizer, os.environ.get('MISTRAL_7B_INSTRUCT_V0_1_ORIGIN_PATH')),
 | 
			
		||||
    # (AutoModelForCausalLM, AutoTokenizer, os.environ.get('BAICHUAN2_7B_ORIGIN_PATH')),
 | 
			
		||||
| 
						 | 
				
			
			@ -67,7 +66,7 @@ def test_load_low_bit_completion(Model, Tokenizer, model_path, prompt, answer):
 | 
			
		|||
                                  load_in_4bit=True,
 | 
			
		||||
                                  optimize_model=True,
 | 
			
		||||
                                  trust_remote_code=True)
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    with tempfile.TemporaryDirectory() as tempdir:
 | 
			
		||||
        model.save_low_bit(tempdir)
 | 
			
		||||
        loaded_model = Model.load_low_bit(tempdir,
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -30,7 +30,6 @@ PROMPT = "Once upon a time, there existed a little girl who liked to have advent
 | 
			
		|||
TEST_MODEL_LIST = [
 | 
			
		||||
    ("MPT-7B", AutoModelForCausalLM, AutoTokenizer, os.environ.get('MPT_7B_ORIGIN_PATH')),
 | 
			
		||||
    ("Llama2-7B", AutoModelForCausalLM, LlamaTokenizer, os.environ.get('LLAMA2_7B_ORIGIN_PATH')),
 | 
			
		||||
    ("Falcon-7B", AutoModelForCausalLM, AutoTokenizer, os.environ.get('FALCON_7B_ORIGIN_PATH')),
 | 
			
		||||
    ("ChatGLM2-6B", AutoModel, AutoTokenizer, os.environ.get('CHATGLM2_6B_ORIGIN_PATH')),
 | 
			
		||||
    ("Mistral-7B-Instruct-v0.1", AutoModelForCausalLM, AutoTokenizer, os.environ.get('MISTRAL_7B_INSTRUCT_V0_1_ORIGIN_PATH')),
 | 
			
		||||
    ("Baichuan2-7B-Chat", AutoModelForCausalLM, AutoTokenizer, os.environ.get('BAICHUAN2_7B_ORIGIN_PATH')),
 | 
			
		||||
| 
						 | 
				
			
			@ -128,8 +127,6 @@ class Test_Optimize_Gpu_Model:
 | 
			
		|||
            self.MPT_7B_gpu_model(Name, Model, Tokenizer, model_path)
 | 
			
		||||
        elif Name == "Llama2-7B":
 | 
			
		||||
            self.Llama2_7B_gpu_model(Name, Model, Tokenizer, model_path)
 | 
			
		||||
        elif Name == "Falcon-7B":
 | 
			
		||||
            self.Falcon_7B_gpu_model(Name, Model, Tokenizer, model_path)
 | 
			
		||||
        elif Name == "ChatGLM2-6B":
 | 
			
		||||
            self.Chatglm2_gpu_model(Name, Model, Tokenizer, model_path)
 | 
			
		||||
        elif Name == "Mistral-7B-Instruct-v0.1":
 | 
			
		||||
| 
						 | 
				
			
			@ -154,13 +151,6 @@ class Test_Optimize_Gpu_Model:
 | 
			
		|||
        lower_bound = 2e-1
 | 
			
		||||
        self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
 | 
			
		||||
 | 
			
		||||
    def Falcon_7B_gpu_model(self, Name, Model, Tokenizer, model_path):
 | 
			
		||||
        # currently only compare the output of the last self-attention layer.
 | 
			
		||||
        layer_norm = "transformer.h.31.input_layernorm"
 | 
			
		||||
        self_attn = "transformer.h.31.self_attention"
 | 
			
		||||
        lower_bound = 0
 | 
			
		||||
        self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
 | 
			
		||||
 | 
			
		||||
    def Chatglm2_gpu_model(self, Name, Model, Tokenizer, model_path):
 | 
			
		||||
        # currently only need to compare the output of one self-attention layer.
 | 
			
		||||
        layer_norm = "transformer.encoder.layers.27.input_layernorm"
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -29,7 +29,6 @@ print(f'Running on {device}')
 | 
			
		|||
PROMPT = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
 | 
			
		||||
TEST_MODEL_LIST = [
 | 
			
		||||
    ("MPT-7B", AutoModelForCausalLM, AutoTokenizer, os.environ.get('MPT_7B_ORIGIN_PATH')),
 | 
			
		||||
    ("Falcon-7B", AutoModelForCausalLM, AutoTokenizer, os.environ.get('FALCON_7B_ORIGIN_PATH')),
 | 
			
		||||
]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -60,7 +59,7 @@ def test_optimize_model(Name, Model, Tokenizer, model_path):
 | 
			
		|||
        tol = 1e-03
 | 
			
		||||
        num_false = torch.isclose(logits_optimized_model, logits_base_model, rtol=tol, atol=tol)\
 | 
			
		||||
            .flatten().tolist().count(False)
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        percent_false = num_false / logits_optimized_model.numel()
 | 
			
		||||
        torch.xpu.empty_cache()
 | 
			
		||||
        del model
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,117 +0,0 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
import pytest
 | 
			
		||||
import gc
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from ipex_llm.transformers import AutoModelForCausalLM, AutoModel
 | 
			
		||||
from transformers import LlamaTokenizer, AutoTokenizer
 | 
			
		||||
 | 
			
		||||
device = os.environ['DEVICE']
 | 
			
		||||
print(f'Running on {device}')
 | 
			
		||||
 | 
			
		||||
PROMPT = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
 | 
			
		||||
TEST_MODEL_LIST = [
 | 
			
		||||
    ("Falcon-7B", AutoModelForCausalLM, AutoTokenizer, os.environ.get('FALCON_7B_ORIGIN_PATH'))
 | 
			
		||||
]
 | 
			
		||||
 | 
			
		||||
class Test_Optimize_Gpu_Model:
 | 
			
		||||
    def setup_method(self):
 | 
			
		||||
        self.layer_outputs = []
 | 
			
		||||
        self.pre_layer_outputs = []
 | 
			
		||||
 | 
			
		||||
    def run_optimize_gpu_model(self, Name, Model, Tokenizer, model_path, LayerNorm_layer, layer_before_LayerNorm, lower_bound):
 | 
			
		||||
        with torch.inference_mode():
 | 
			
		||||
            def pre_forward_hook(module, input, output, layer_name):
 | 
			
		||||
                self.pre_layer_outputs.append(output)
 | 
			
		||||
 | 
			
		||||
            def forward_hook(module, input, output, layer_name):
 | 
			
		||||
                self.layer_outputs.append(output)
 | 
			
		||||
 | 
			
		||||
            tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
            input_ids = tokenizer.encode(PROMPT, return_tensors="pt").to(device)
 | 
			
		||||
 | 
			
		||||
            model = Model.from_pretrained(model_path,
 | 
			
		||||
                                        load_in_4bit=True,
 | 
			
		||||
                                        optimize_model=False,
 | 
			
		||||
                                        trust_remote_code=True)
 | 
			
		||||
            model = model.to(device)
 | 
			
		||||
            for layer_name, layer_module in model.named_modules():
 | 
			
		||||
                if layer_name == layer_before_LayerNorm:
 | 
			
		||||
                    layer_module.register_forward_hook(
 | 
			
		||||
                        lambda module, input, output, layer_name=layer_name: pre_forward_hook(module, input,
 | 
			
		||||
                                                                                            output, layer_name))
 | 
			
		||||
                if layer_name == LayerNorm_layer:
 | 
			
		||||
                    layer_module.register_forward_hook(
 | 
			
		||||
                        lambda module, input, output, layer_name=layer_name: forward_hook(module, input,
 | 
			
		||||
                                                                                        output, layer_name))
 | 
			
		||||
            logits_base_model = (model(input_ids)).logits
 | 
			
		||||
            # the list `layer_output` has only one element.
 | 
			
		||||
            layer_tensor = self.layer_outputs.pop()
 | 
			
		||||
            model.to('cpu')
 | 
			
		||||
 | 
			
		||||
            opt_model = Model.from_pretrained(model_path,
 | 
			
		||||
                                            load_in_4bit=True,
 | 
			
		||||
                                            optimize_model=True,
 | 
			
		||||
                                            trust_remote_code=True)
 | 
			
		||||
            opt_model = opt_model.to(device)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
            def replace_forward_hook(module, input, output, layer_name):
 | 
			
		||||
                output = self.pre_layer_outputs[0]
 | 
			
		||||
                return output
 | 
			
		||||
 | 
			
		||||
            for layer_name, layer_module in opt_model.named_modules():
 | 
			
		||||
                if layer_name == layer_before_LayerNorm:
 | 
			
		||||
                    layer_module.register_forward_hook(
 | 
			
		||||
                        lambda module, input, output, layer_name=layer_name: replace_forward_hook(module, input,
 | 
			
		||||
                                                                                                output, layer_name))
 | 
			
		||||
                if layer_name == LayerNorm_layer:
 | 
			
		||||
                    layer_module.register_forward_hook(
 | 
			
		||||
                        lambda module, input, output, layer_name=layer_name: forward_hook(module, input,
 | 
			
		||||
                                                                                        output, layer_name))
 | 
			
		||||
            logits_optimized_model = (opt_model(input_ids)).logits
 | 
			
		||||
            # the list `layer_output` has only one element.
 | 
			
		||||
            opt_layer_tensor = self.layer_outputs[0]
 | 
			
		||||
            opt_model.to('cpu')
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
            LayerNorm_output_diff = []
 | 
			
		||||
            for i, (t1, t2) in enumerate(zip(layer_tensor, opt_layer_tensor)):
 | 
			
		||||
                LayerNorm_output_diff.append(t1 - t2)
 | 
			
		||||
 | 
			
		||||
            max_diff_tensor = [torch.max(item).item() for item in LayerNorm_output_diff]
 | 
			
		||||
            print(max_diff_tensor)
 | 
			
		||||
            torch.xpu.empty_cache()
 | 
			
		||||
            del model
 | 
			
		||||
            del opt_model
 | 
			
		||||
            gc.collect()
 | 
			
		||||
            assert all(max_diff <= lower_bound for max_diff in max_diff_tensor)
 | 
			
		||||
 | 
			
		||||
    @pytest.mark.parametrize('Name, Model, Tokenizer, model_path',TEST_MODEL_LIST)
 | 
			
		||||
    def test_dynamic_functions(self, Name, Model, Tokenizer, model_path):
 | 
			
		||||
        if Name == "Falcon-7B":
 | 
			
		||||
            self.Falcon_7B_gpu_model(Name, Model, Tokenizer, model_path)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    def Falcon_7B_gpu_model(self, Name, Model, Tokenizer, model_path):
 | 
			
		||||
        # currently only compare the output of the last LayerNorm layer.
 | 
			
		||||
        layer_before_LayerNorm = "transformer.h.30"
 | 
			
		||||
        LayerNorm_layer = "transformer.h.31.input_layernorm"
 | 
			
		||||
        lower_bound = 1e-5
 | 
			
		||||
        self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, LayerNorm_layer, layer_before_LayerNorm, lower_bound)
 | 
			
		||||
| 
						 | 
				
			
			@ -29,14 +29,10 @@ start=$(date "+%s")
 | 
			
		|||
source ${ANALYTICS_ZOO_ROOT}/python/llm/test/run-llm-check-function.sh
 | 
			
		||||
 | 
			
		||||
pytest_check_error pytest ${LLM_INFERENCE_TEST_DIR}/test_transformers_api.py -v -s
 | 
			
		||||
pytest_check_error pytest ${LLM_INFERENCE_TEST_DIR}/test_transformers_api_layernorm.py -v -s
 | 
			
		||||
 | 
			
		||||
export BIGDL_LLM_XMX_DISABLED=1
 | 
			
		||||
pytest_check_error pytest ${LLM_INFERENCE_TEST_DIR}/test_transformers_api_final_logits.py -v -s
 | 
			
		||||
pytest_check_error pytest ${LLM_INFERENCE_TEST_DIR}/test_transformers_api_attention.py -v -s
 | 
			
		||||
pytest_check_error pytest ${LLM_INFERENCE_TEST_DIR}/test_transformers_api_mlp.py -v -s
 | 
			
		||||
pytest_check_error pytest ${LLM_INFERENCE_TEST_DIR}/test_transformers_api_RMSNorm.py -v -s
 | 
			
		||||
unset BIGDL_LLM_XMX_DISABLED
 | 
			
		||||
 | 
			
		||||
now=$(date "+%s")
 | 
			
		||||
time=$((now-start))
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue