refactor device check and remove cohere/mixtral support (#12659)
This commit is contained in:
		
							parent
							
								
									ea65e4fecc
								
							
						
					
					
						commit
						ddc0ef3993
					
				
					 9 changed files with 44 additions and 1359 deletions
				
			
		| 
						 | 
				
			
			@ -1710,31 +1710,6 @@ def _optimize_post(model):
 | 
			
		|||
        convert_forward(model, module.VisionAttention, qwen2_vision_attention_forward)
 | 
			
		||||
        convert_forward(model, module.Qwen2VLModel, qwen2_vl_model_forward)
 | 
			
		||||
        convert_forward(model, module.Qwen2VLAttention, qwen2_vl_attention_forward)
 | 
			
		||||
    elif model.config.model_type == "cohere":
 | 
			
		||||
        # for CohereForAI/c4ai-command-r-v01
 | 
			
		||||
        invalidInputError(version.parse(trans_version) >= version.parse("4.40.0"),
 | 
			
		||||
                          "Please upgrade transformers to 4.40.0 or higher version "
 | 
			
		||||
                          "to run Mixtral models.")
 | 
			
		||||
        modeling_module_name = model.__class__.__module__
 | 
			
		||||
        module = importlib.import_module(modeling_module_name)
 | 
			
		||||
        if version.parse(trans_version) >= version.parse("4.41.0"):
 | 
			
		||||
            from ipex_llm.transformers.models.cohere import cohere_model_forward_4_41
 | 
			
		||||
            convert_forward(model,
 | 
			
		||||
                            module.CohereModel,
 | 
			
		||||
                            cohere_model_forward_4_41)
 | 
			
		||||
        else:
 | 
			
		||||
            from ipex_llm.transformers.models.cohere import cohere_model_forward
 | 
			
		||||
            convert_forward(model,
 | 
			
		||||
                            module.CohereModel,
 | 
			
		||||
                            cohere_model_forward)
 | 
			
		||||
 | 
			
		||||
        from ipex_llm.transformers.models.cohere import cohere_attention_forward
 | 
			
		||||
        convert_forward(model,
 | 
			
		||||
                        module.CohereAttention,
 | 
			
		||||
                        cohere_attention_forward)
 | 
			
		||||
        convert_forward(model,
 | 
			
		||||
                        module.CohereMLP,
 | 
			
		||||
                        mlp_silu_forward)
 | 
			
		||||
    elif model.config.model_type == "aquila":
 | 
			
		||||
        modeling_module_name = model.__class__.__module__
 | 
			
		||||
        module = importlib.import_module(modeling_module_name)
 | 
			
		||||
| 
						 | 
				
			
			@ -1746,31 +1721,6 @@ def _optimize_post(model):
 | 
			
		|||
        convert_forward(model,
 | 
			
		||||
                        module.AquilaRMSNorm,
 | 
			
		||||
                        rms_norm_forward)
 | 
			
		||||
    elif model.config.model_type == "mixtral":
 | 
			
		||||
        # For mistralai/Mixtral-8x7B-v0.1
 | 
			
		||||
        invalidInputError(version.parse(trans_version) >= version.parse("4.36.0"),
 | 
			
		||||
                          "Please upgrade transformers to 4.36.0 or higher version "
 | 
			
		||||
                          "to run Mixtral models.")
 | 
			
		||||
        modeling_module_name = model.__class__.__module__
 | 
			
		||||
        module = importlib.import_module(modeling_module_name)
 | 
			
		||||
        from ipex_llm.transformers.models.mixtral import mixtral_moeblock_forward, \
 | 
			
		||||
            mixtral_attention_forward, mixtral_mlp_forward, mixtral_model_forward
 | 
			
		||||
        convert_forward(model,
 | 
			
		||||
                        module.MixtralAttention,
 | 
			
		||||
                        mixtral_attention_forward)
 | 
			
		||||
        convert_forward(model,
 | 
			
		||||
                        module.MixtralRMSNorm,
 | 
			
		||||
                        rms_norm_forward)
 | 
			
		||||
        convert_forward(model,
 | 
			
		||||
                        module.MixtralSparseMoeBlock,
 | 
			
		||||
                        mixtral_moeblock_forward)
 | 
			
		||||
        convert_forward(model,
 | 
			
		||||
                        module.MixtralBLockSparseTop2MLP,
 | 
			
		||||
                        mixtral_mlp_forward)
 | 
			
		||||
        convert_forward(model,
 | 
			
		||||
                        module.MixtralModel,
 | 
			
		||||
                        mixtral_model_forward)
 | 
			
		||||
 | 
			
		||||
    elif model.config.model_type == "phi-msft" and \
 | 
			
		||||
            hasattr(model.config, "num_local_experts"):
 | 
			
		||||
        # For phixtral, limit the condition to avoid applying on phi-2 hosted by ModelScope
 | 
			
		||||
| 
						 | 
				
			
			@ -1785,29 +1735,19 @@ def _optimize_post(model):
 | 
			
		|||
                        module.MLP,
 | 
			
		||||
                        phixtral_mlp_forward)
 | 
			
		||||
    elif model.config.model_type == "mistral":
 | 
			
		||||
        if model.config.architectures is not None and \
 | 
			
		||||
                model.config.architectures[0] == "MixtralForCausalLM":
 | 
			
		||||
            # For DiscoResearch/mixtral-7b-8expert
 | 
			
		||||
            invalidInputError(version.parse(trans_version) >= version.parse("4.36.0"),
 | 
			
		||||
                              "Please upgrade transformers to 4.36.0 or higher version "
 | 
			
		||||
                              "to run Mixtral models.")
 | 
			
		||||
            modeling_module_name = model.__class__.__module__
 | 
			
		||||
            module = importlib.import_module(modeling_module_name)
 | 
			
		||||
            convert_forward(model, module.MistralRMSNorm, rms_norm_forward)
 | 
			
		||||
        else:
 | 
			
		||||
            modeling_module_name = model.__class__.__module__
 | 
			
		||||
            module = importlib.import_module(modeling_module_name)
 | 
			
		||||
        modeling_module_name = model.__class__.__module__
 | 
			
		||||
        module = importlib.import_module(modeling_module_name)
 | 
			
		||||
 | 
			
		||||
            from ipex_llm.transformers.models.mistral import mistral_model_forward
 | 
			
		||||
            from ipex_llm.transformers.models.mistral import mistral_attention_forward
 | 
			
		||||
            from ipex_llm.transformers.models.common import rms_norm_forward
 | 
			
		||||
            from ipex_llm.transformers.models.common import mlp_silu_forward
 | 
			
		||||
        from ipex_llm.transformers.models.mistral import mistral_model_forward
 | 
			
		||||
        from ipex_llm.transformers.models.mistral import mistral_attention_forward
 | 
			
		||||
        from ipex_llm.transformers.models.common import rms_norm_forward
 | 
			
		||||
        from ipex_llm.transformers.models.common import mlp_silu_forward
 | 
			
		||||
 | 
			
		||||
            convert_forward(model, module.MistralModel, mistral_model_forward)
 | 
			
		||||
            convert_forward(model, module.MistralAttention, mistral_attention_forward)
 | 
			
		||||
            convert_forward(model, module.MistralSdpaAttention, mistral_attention_forward)
 | 
			
		||||
            convert_forward(model, module.MistralRMSNorm, rms_norm_forward)
 | 
			
		||||
            convert_forward(model, module.MistralMLP, mlp_silu_forward)
 | 
			
		||||
        convert_forward(model, module.MistralModel, mistral_model_forward)
 | 
			
		||||
        convert_forward(model, module.MistralAttention, mistral_attention_forward)
 | 
			
		||||
        convert_forward(model, module.MistralSdpaAttention, mistral_attention_forward)
 | 
			
		||||
        convert_forward(model, module.MistralRMSNorm, rms_norm_forward)
 | 
			
		||||
        convert_forward(model, module.MistralMLP, mlp_silu_forward)
 | 
			
		||||
    elif model.config.model_type == "gemma":
 | 
			
		||||
        modeling_module_name = model.__class__.__module__
 | 
			
		||||
        module = importlib.import_module(modeling_module_name)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -33,7 +33,7 @@ from ipex_llm.transformers.speculative import greedy, deepmind_sample, logits_to
 | 
			
		|||
    _crop_past_key_values, _prepare_generate_args, _non_cpu_ipex_verify, clear_benchmarks,\
 | 
			
		||||
    _prepare_generate_args_4_45
 | 
			
		||||
from ipex_llm.utils.common import invalidInputError
 | 
			
		||||
from ipex_llm.transformers.utils import get_xpu_device_type
 | 
			
		||||
from ipex_llm.transformers.utils import get_xpu_device_name
 | 
			
		||||
 | 
			
		||||
logger = logging.getLogger("ipex_llm.lookup")
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -295,7 +295,7 @@ def lookup_generate(self,
 | 
			
		|||
    invalidInputError(input_ids.shape[0] == 1,
 | 
			
		||||
                      "Prompt lookup is currently not supported with batch inference.")
 | 
			
		||||
 | 
			
		||||
    device_name = get_xpu_device_type(input_ids)
 | 
			
		||||
    device_name = get_xpu_device_name(input_ids.device)
 | 
			
		||||
 | 
			
		||||
    candidates_generator = PromptLookupCandidateGenerator(
 | 
			
		||||
        num_output_tokens=num_output_tokens,
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -51,7 +51,7 @@ from torch import Tensor, device, dtype, nn
 | 
			
		|||
from operator import mul
 | 
			
		||||
from functools import reduce
 | 
			
		||||
from ipex_llm.transformers.xpu_customize_fwd import custom_fwd, custom_bwd
 | 
			
		||||
from ipex_llm.transformers.utils import get_autocast_dtype, get_xpu_device_type, \
 | 
			
		||||
from ipex_llm.transformers.utils import get_autocast_dtype, get_xpu_device_name, \
 | 
			
		||||
    get_ipex_version
 | 
			
		||||
from ipex_llm.transformers.convert import is_deepspeed_available, get_use_vllm
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -266,7 +266,7 @@ def reshape_lm_head_input(x):
 | 
			
		|||
 | 
			
		||||
 | 
			
		||||
def use_batch_forward(x: torch.Tensor, qtype: int, output_len: int):
 | 
			
		||||
    device = get_xpu_device_type(x)
 | 
			
		||||
    device_name = get_xpu_device_name(x.device)
 | 
			
		||||
    batch_size = x.shape[0]
 | 
			
		||||
    hard_condition = (
 | 
			
		||||
        x.dtype in [torch.float, torch.half]
 | 
			
		||||
| 
						 | 
				
			
			@ -286,7 +286,7 @@ def use_batch_forward(x: torch.Tensor, qtype: int, output_len: int):
 | 
			
		|||
            or (
 | 
			
		||||
                qtype in [SYM_INT8, FP4, FP6, Q4_K, Q6_K]
 | 
			
		||||
                and batch_size <= 48
 | 
			
		||||
                and device in ["arc", "flex", "pvc", "mtl"]
 | 
			
		||||
                and device_name in ["arc", "pvc", "mtl", "lnl", "arl"]
 | 
			
		||||
                and x.shape[1] % 256 == 0
 | 
			
		||||
                and output_len % 32 == 0
 | 
			
		||||
            )
 | 
			
		||||
| 
						 | 
				
			
			@ -295,8 +295,8 @@ def use_batch_forward(x: torch.Tensor, qtype: int, output_len: int):
 | 
			
		|||
    if hard_condition:
 | 
			
		||||
        return (
 | 
			
		||||
            batch_size > 1
 | 
			
		||||
            or (device in ["arc", "flex"] and qtype in [SYM_INT8, FP4])
 | 
			
		||||
            or (device in ["arc", "flex", "mtl"] and qtype in [FP8E4])
 | 
			
		||||
            or (device in ["arc"] and qtype in [SYM_INT8, FP4])
 | 
			
		||||
            or (device in ["arc", "mtl"] and qtype in [FP8E4])
 | 
			
		||||
            or (device in ["lnl"] and qtype in [SYM_INT4] and x.shape[1] % 512 == 0)
 | 
			
		||||
            or (device in ["bmg"] and qtype in [SYM_INT4, FP8E5])
 | 
			
		||||
        )
 | 
			
		||||
| 
						 | 
				
			
			@ -603,7 +603,7 @@ class LowBitLinear(nn.Linear):
 | 
			
		|||
        # empty cache before and after lm_head at first token when input > 1024
 | 
			
		||||
        # on arc or IPEX_LLM_LOW_MEM is set to 1 at inference time.
 | 
			
		||||
        if self.device is None:
 | 
			
		||||
            self.device = get_xpu_device_type(self.weight.data)
 | 
			
		||||
            self.device = get_xpu_device_name(self.weight.data.device)
 | 
			
		||||
            self.low_memory_mode = \
 | 
			
		||||
                self.low_memory_mode and \
 | 
			
		||||
                (self.device == "arc" or os.environ.get("IPEX_LLM_LOW_MEM", None) == "1")
 | 
			
		||||
| 
						 | 
				
			
			@ -782,7 +782,7 @@ class FP16Linear(nn.Linear):
 | 
			
		|||
        if not self.use_esimd_kernel(x):
 | 
			
		||||
            if (
 | 
			
		||||
                get_ipex_version() < "2.1.10+xpu"
 | 
			
		||||
                or get_xpu_device_type(x) not in ["arc", "flex", "pvc"]
 | 
			
		||||
                or get_xpu_device_name(x.device) not in ["arc", "pvc"]
 | 
			
		||||
                or self.disable_fp16_opt
 | 
			
		||||
            ):
 | 
			
		||||
                if self.weight_type == 2:
 | 
			
		||||
| 
						 | 
				
			
			@ -848,7 +848,7 @@ class FP16Linear(nn.Linear):
 | 
			
		|||
            return result.to(x.dtype)
 | 
			
		||||
 | 
			
		||||
    def use_esimd_kernel(self, x):
 | 
			
		||||
        gpu_type = get_xpu_device_type(x)
 | 
			
		||||
        gpu_type = get_xpu_device_name(x.device)
 | 
			
		||||
        if self.disable_fp16_opt:
 | 
			
		||||
            return False
 | 
			
		||||
        # esimd kernel can only be used for Arc and Flex
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,589 +0,0 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
# Some parts of this file is adapted from
 | 
			
		||||
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/cohere/modeling_cohere.py
 | 
			
		||||
 | 
			
		||||
# coding=utf-8
 | 
			
		||||
# Copyright 2024 Cohere team. All rights reserved.
 | 
			
		||||
#
 | 
			
		||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
 | 
			
		||||
# and OPT implementations in this library. It has been modified from its
 | 
			
		||||
# original forms to accommodate minor architectural differences compared
 | 
			
		||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
 | 
			
		||||
# This file is based on the LLama model definition file in transformers
 | 
			
		||||
 | 
			
		||||
"""PyTorch Cohere model."""
 | 
			
		||||
import math
 | 
			
		||||
import torch
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
import torch.nn as nn
 | 
			
		||||
import torch.utils.checkpoint
 | 
			
		||||
from typing import Optional, Tuple, List
 | 
			
		||||
from ipex_llm.transformers.models.utils import repeat_kv
 | 
			
		||||
from ipex_llm.transformers.models.utils import extend_kv_cache, append_kv_cache
 | 
			
		||||
from transformers.models.cohere.modeling_cohere import apply_rotary_pos_emb
 | 
			
		||||
from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_36
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_decoding_fast_path
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp
 | 
			
		||||
from transformers.models.cohere.modeling_cohere import apply_rotary_pos_emb
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
 | 
			
		||||
from ipex_llm.transformers.kv import DynamicFp8Cache
 | 
			
		||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope
 | 
			
		||||
from transformers.modeling_outputs import BaseModelOutputWithPast
 | 
			
		||||
from ipex_llm.utils.common import invalidInputError
 | 
			
		||||
try:
 | 
			
		||||
    from transformers.cache_utils import Cache, DynamicCache
 | 
			
		||||
except ImportError:
 | 
			
		||||
    Cache = Tuple[torch.Tensor]
 | 
			
		||||
 | 
			
		||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def cohere_model_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    input_ids: torch.LongTensor = None,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_values: Optional[List[torch.FloatTensor]] = None,
 | 
			
		||||
    inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
			
		||||
    use_cache: Optional[bool] = None,
 | 
			
		||||
    output_attentions: Optional[bool] = None,
 | 
			
		||||
    output_hidden_states: Optional[bool] = None,
 | 
			
		||||
    return_dict: Optional[bool] = None,
 | 
			
		||||
    cache_position: Optional[torch.LongTensor] = None,
 | 
			
		||||
):
 | 
			
		||||
    use_cache = use_cache if use_cache is not None \
 | 
			
		||||
        else self.config.use_cache
 | 
			
		||||
    if use_cache and use_quantize_kv_cache(self.layers[0].mlp.up_proj, input_ids):
 | 
			
		||||
        if not isinstance(past_key_values, DynamicFp8Cache):
 | 
			
		||||
            past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
 | 
			
		||||
    output_attentions = output_attentions if output_attentions is not None \
 | 
			
		||||
        else self.config.output_attentions
 | 
			
		||||
    output_hidden_states = (
 | 
			
		||||
        output_hidden_states if output_hidden_states is not None
 | 
			
		||||
        else self.config.output_hidden_states
 | 
			
		||||
    )
 | 
			
		||||
    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
			
		||||
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
 | 
			
		||||
 | 
			
		||||
    if input_ids is not None and inputs_embeds is not None:
 | 
			
		||||
        invalidInputError(False,
 | 
			
		||||
                          "You cannot specify both input_ids and inputs_embeds at the same time")
 | 
			
		||||
 | 
			
		||||
    if self.gradient_checkpointing and self.training and use_cache:
 | 
			
		||||
        invalidInputError(False,
 | 
			
		||||
                          "`use_cache=True` is incompatible "
 | 
			
		||||
                          "with gradient checkpointing. Setting `use_cache=False`.")
 | 
			
		||||
        use_cache = False
 | 
			
		||||
 | 
			
		||||
    if inputs_embeds is None:
 | 
			
		||||
        inputs_embeds = self.embed_tokens(input_ids)
 | 
			
		||||
 | 
			
		||||
    past_seen_tokens = 0
 | 
			
		||||
    if use_cache:  # kept for BC (cache positions)
 | 
			
		||||
        if not isinstance(past_key_values, Cache):
 | 
			
		||||
            past_key_values = DynamicCache.from_legacy_cache(past_key_values)
 | 
			
		||||
        past_seen_tokens = past_key_values.get_seq_length()
 | 
			
		||||
 | 
			
		||||
    if cache_position is None:
 | 
			
		||||
        if isinstance(past_key_values, Cache):
 | 
			
		||||
            invalidInputError(False, "cache_position is a required argument when using Cache.")
 | 
			
		||||
        cache_position = torch.arange(
 | 
			
		||||
            past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    if position_ids is None:
 | 
			
		||||
        position_ids = cache_position.unsqueeze(0)
 | 
			
		||||
 | 
			
		||||
    causal_mask = self._update_causal_mask(attention_mask,
 | 
			
		||||
                                           inputs_embeds, cache_position, past_seen_tokens)
 | 
			
		||||
 | 
			
		||||
    # embed positions
 | 
			
		||||
    hidden_states = inputs_embeds
 | 
			
		||||
 | 
			
		||||
    # decoder layers
 | 
			
		||||
    all_hidden_states = () if output_hidden_states else None
 | 
			
		||||
    all_self_attns = () if output_attentions else None
 | 
			
		||||
    next_decoder_cache = None
 | 
			
		||||
 | 
			
		||||
    for decoder_layer in self.layers:
 | 
			
		||||
        if output_hidden_states:
 | 
			
		||||
            all_hidden_states += (hidden_states,)
 | 
			
		||||
 | 
			
		||||
        if self.gradient_checkpointing and self.training:
 | 
			
		||||
            layer_outputs = self._gradient_checkpointing_func(
 | 
			
		||||
                decoder_layer.__call__,
 | 
			
		||||
                hidden_states,
 | 
			
		||||
                causal_mask,
 | 
			
		||||
                position_ids,
 | 
			
		||||
                past_key_values,
 | 
			
		||||
                output_attentions,
 | 
			
		||||
                use_cache,
 | 
			
		||||
                cache_position,
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            # ipex-llm changes
 | 
			
		||||
            curr_device = decoder_layer.input_layernorm.weight.device
 | 
			
		||||
            if causal_mask is not None:
 | 
			
		||||
                causal_mask = causal_mask.to(curr_device)
 | 
			
		||||
            if position_ids is not None:
 | 
			
		||||
                position_ids = position_ids.to(curr_device)
 | 
			
		||||
            # ipex-llm changes end
 | 
			
		||||
            layer_outputs = decoder_layer(
 | 
			
		||||
                hidden_states,
 | 
			
		||||
                attention_mask=causal_mask,
 | 
			
		||||
                position_ids=position_ids,
 | 
			
		||||
                past_key_value=past_key_values,
 | 
			
		||||
                output_attentions=output_attentions,
 | 
			
		||||
                use_cache=use_cache,
 | 
			
		||||
                cache_position=cache_position,
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        hidden_states = layer_outputs[0]
 | 
			
		||||
 | 
			
		||||
        if use_cache:
 | 
			
		||||
            next_decoder_cache = layer_outputs[2 if output_attentions else 1]
 | 
			
		||||
 | 
			
		||||
        if output_attentions:
 | 
			
		||||
            all_self_attns += (layer_outputs[1],)
 | 
			
		||||
 | 
			
		||||
    hidden_states = self.norm(hidden_states)
 | 
			
		||||
 | 
			
		||||
    # add hidden states from the last decoder layer
 | 
			
		||||
    if output_hidden_states:
 | 
			
		||||
        all_hidden_states += (hidden_states,)
 | 
			
		||||
 | 
			
		||||
    next_cache = next_decoder_cache if use_cache else None
 | 
			
		||||
    if not return_dict:
 | 
			
		||||
        return tuple(v for v in [hidden_states, next_cache,
 | 
			
		||||
                                 all_hidden_states, all_self_attns] if v is not None)
 | 
			
		||||
    return BaseModelOutputWithPast(
 | 
			
		||||
        last_hidden_state=hidden_states,
 | 
			
		||||
        past_key_values=next_cache,
 | 
			
		||||
        hidden_states=all_hidden_states,
 | 
			
		||||
        attentions=all_self_attns,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def cohere_model_forward_4_41(
 | 
			
		||||
    self,
 | 
			
		||||
    input_ids: torch.LongTensor = None,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_values: Optional[List[torch.FloatTensor]] = None,
 | 
			
		||||
    inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
			
		||||
    use_cache: Optional[bool] = None,
 | 
			
		||||
    output_attentions: Optional[bool] = None,
 | 
			
		||||
    output_hidden_states: Optional[bool] = None,
 | 
			
		||||
    return_dict: Optional[bool] = None,
 | 
			
		||||
    cache_position: Optional[torch.LongTensor] = None,
 | 
			
		||||
):
 | 
			
		||||
    use_cache = use_cache if use_cache is not None \
 | 
			
		||||
        else self.config.use_cache
 | 
			
		||||
    if use_cache and use_quantize_kv_cache(self.layers[0].mlp.up_proj, input_ids):
 | 
			
		||||
        if not isinstance(past_key_values, DynamicFp8Cache):
 | 
			
		||||
            past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
 | 
			
		||||
    output_attentions = output_attentions if output_attentions is not None \
 | 
			
		||||
        else self.config.output_attentions
 | 
			
		||||
    output_hidden_states = (
 | 
			
		||||
        output_hidden_states if output_hidden_states is not None
 | 
			
		||||
        else self.config.output_hidden_states
 | 
			
		||||
    )
 | 
			
		||||
    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
			
		||||
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
 | 
			
		||||
 | 
			
		||||
    if input_ids is not None and inputs_embeds is not None:
 | 
			
		||||
        invalidInputError(False,
 | 
			
		||||
                          "You cannot specify both input_ids and inputs_embeds at the same time")
 | 
			
		||||
 | 
			
		||||
    if self.gradient_checkpointing and self.training and use_cache:
 | 
			
		||||
        invalidInputError(False,
 | 
			
		||||
                          "`use_cache=True` is incompatible "
 | 
			
		||||
                          "with gradient checkpointing. Setting `use_cache=False`.")
 | 
			
		||||
        use_cache = False
 | 
			
		||||
 | 
			
		||||
    if inputs_embeds is None:
 | 
			
		||||
        inputs_embeds = self.embed_tokens(input_ids)
 | 
			
		||||
 | 
			
		||||
    past_seen_tokens = 0
 | 
			
		||||
    return_legacy_cache = False
 | 
			
		||||
    # kept for BC (non `Cache` `past_key_values` inputs)
 | 
			
		||||
    if use_cache and not isinstance(past_key_values, Cache):
 | 
			
		||||
        return_legacy_cache = True
 | 
			
		||||
        past_key_values = DynamicCache.from_legacy_cache(past_key_values)
 | 
			
		||||
 | 
			
		||||
    if cache_position is None:
 | 
			
		||||
        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
 | 
			
		||||
        cache_position = torch.arange(
 | 
			
		||||
            past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    if position_ids is None:
 | 
			
		||||
        position_ids = cache_position.unsqueeze(0)
 | 
			
		||||
 | 
			
		||||
    causal_mask = self._update_causal_mask(
 | 
			
		||||
        attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # embed positions
 | 
			
		||||
    hidden_states = inputs_embeds
 | 
			
		||||
 | 
			
		||||
    # decoder layers
 | 
			
		||||
    all_hidden_states = () if output_hidden_states else None
 | 
			
		||||
    all_self_attns = () if output_attentions else None
 | 
			
		||||
    next_decoder_cache = None
 | 
			
		||||
 | 
			
		||||
    for decoder_layer in self.layers:
 | 
			
		||||
        if output_hidden_states:
 | 
			
		||||
            all_hidden_states += (hidden_states,)
 | 
			
		||||
 | 
			
		||||
        if self.gradient_checkpointing and self.training:
 | 
			
		||||
            layer_outputs = self._gradient_checkpointing_func(
 | 
			
		||||
                decoder_layer.__call__,
 | 
			
		||||
                hidden_states,
 | 
			
		||||
                causal_mask,
 | 
			
		||||
                position_ids,
 | 
			
		||||
                past_key_values,
 | 
			
		||||
                output_attentions,
 | 
			
		||||
                use_cache,
 | 
			
		||||
                cache_position,
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            # ipex-llm changes
 | 
			
		||||
            curr_device = decoder_layer.input_layernorm.weight.device
 | 
			
		||||
            if causal_mask is not None:
 | 
			
		||||
                causal_mask = causal_mask.to(curr_device)
 | 
			
		||||
            if position_ids is not None:
 | 
			
		||||
                position_ids = position_ids.to(curr_device)
 | 
			
		||||
            # ipex-llm changes end
 | 
			
		||||
            layer_outputs = decoder_layer(
 | 
			
		||||
                hidden_states,
 | 
			
		||||
                attention_mask=causal_mask,
 | 
			
		||||
                position_ids=position_ids,
 | 
			
		||||
                past_key_value=past_key_values,
 | 
			
		||||
                output_attentions=output_attentions,
 | 
			
		||||
                use_cache=use_cache,
 | 
			
		||||
                cache_position=cache_position,
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        hidden_states = layer_outputs[0]
 | 
			
		||||
 | 
			
		||||
        if use_cache:
 | 
			
		||||
            next_decoder_cache = layer_outputs[2 if output_attentions else 1]
 | 
			
		||||
 | 
			
		||||
        if output_attentions:
 | 
			
		||||
            all_self_attns += (layer_outputs[1],)
 | 
			
		||||
 | 
			
		||||
    hidden_states = self.norm(hidden_states)
 | 
			
		||||
 | 
			
		||||
    # add hidden states from the last decoder layer
 | 
			
		||||
    if output_hidden_states:
 | 
			
		||||
        all_hidden_states += (hidden_states,)
 | 
			
		||||
 | 
			
		||||
    next_cache = next_decoder_cache if use_cache else None
 | 
			
		||||
    if return_legacy_cache:
 | 
			
		||||
        next_cache = next_cache.to_legacy_cache()
 | 
			
		||||
    if not return_dict:
 | 
			
		||||
        return tuple(v for v in [hidden_states, next_cache,
 | 
			
		||||
                                 all_hidden_states, all_self_attns] if v is not None)
 | 
			
		||||
    return BaseModelOutputWithPast(
 | 
			
		||||
        last_hidden_state=hidden_states,
 | 
			
		||||
        past_key_values=next_cache,
 | 
			
		||||
        hidden_states=all_hidden_states,
 | 
			
		||||
        attentions=all_self_attns,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def cohere_attention_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | 
			
		||||
    output_attentions: bool = False,
 | 
			
		||||
    use_cache: bool = False,
 | 
			
		||||
    cache_position: Optional[torch.LongTensor] = None,
 | 
			
		||||
    **kwargs,
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
			
		||||
    if use_quantize_kv_cache(self.q_proj, hidden_states):
 | 
			
		||||
        forward_function = cohere_attention_forward_quantized
 | 
			
		||||
    else:
 | 
			
		||||
        forward_function = cohere_attention_forward_origin
 | 
			
		||||
    return forward_function(
 | 
			
		||||
        self=self,
 | 
			
		||||
        hidden_states=hidden_states,
 | 
			
		||||
        attention_mask=attention_mask,
 | 
			
		||||
        position_ids=position_ids,
 | 
			
		||||
        past_key_value=past_key_value,
 | 
			
		||||
        output_attentions=output_attentions,
 | 
			
		||||
        use_cache=use_cache,
 | 
			
		||||
        cache_position=cache_position,
 | 
			
		||||
        **kwargs,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def cohere_attention_forward_quantized(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | 
			
		||||
    output_attentions: bool = False,
 | 
			
		||||
    use_cache: bool = False,
 | 
			
		||||
    cache_position: Optional[torch.LongTensor] = None,
 | 
			
		||||
    **kwargs,
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
			
		||||
    bsz, q_len, _ = hidden_states.size()
 | 
			
		||||
 | 
			
		||||
    query_states = self.q_proj(hidden_states)
 | 
			
		||||
    key_states = self.k_proj(hidden_states)
 | 
			
		||||
    value_states = self.v_proj(hidden_states)
 | 
			
		||||
 | 
			
		||||
    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim)
 | 
			
		||||
    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
 | 
			
		||||
    if self.use_qk_norm:
 | 
			
		||||
        query_states = self.q_norm(query_states)
 | 
			
		||||
        key_states = self.k_norm(key_states)
 | 
			
		||||
 | 
			
		||||
    query_states = query_states.transpose(1, 2)
 | 
			
		||||
    key_states = key_states.transpose(1, 2)
 | 
			
		||||
    value_states = value_states.view(bsz, q_len,
 | 
			
		||||
                                     self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
 | 
			
		||||
    past_key_value = getattr(self, "past_key_value", past_key_value)
 | 
			
		||||
    kv_seq_len = key_states.shape[-2]
 | 
			
		||||
    if past_key_value is not None:
 | 
			
		||||
        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
 | 
			
		||||
    cos, sin = self.rotary_emb(value_states, position_ids)
 | 
			
		||||
    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
 | 
			
		||||
 | 
			
		||||
    if past_key_value is not None:
 | 
			
		||||
        # sin and cos are specific to RoPE models; position_ids needed for the static cache
 | 
			
		||||
        cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
 | 
			
		||||
        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx,
 | 
			
		||||
                                                         cache_kwargs, new_layout=True)
 | 
			
		||||
    if q_len == 1 and query_states.device.type == 'xpu' and not self.training \
 | 
			
		||||
            and not hidden_states.requires_grad:
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, attention_mask)
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
    else:
 | 
			
		||||
        key_states, value_states = restore_fp8_kv_cache(key_states,
 | 
			
		||||
                                                        value_states, query_states.dtype)
 | 
			
		||||
        key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
			
		||||
        value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
			
		||||
 | 
			
		||||
        attn_weights = torch.matmul(query_states,
 | 
			
		||||
                                    key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
        if attention_mask is not None:  # no matter the length, we just slice it
 | 
			
		||||
            causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
 | 
			
		||||
            attn_weights = attn_weights + causal_mask
 | 
			
		||||
 | 
			
		||||
        # upcast attention to fp32
 | 
			
		||||
        attn_weights = nn.functional.softmax(attn_weights,
 | 
			
		||||
                                             dim=-1, dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
        attn_weights = nn.functional.dropout(attn_weights,
 | 
			
		||||
                                             p=self.attention_dropout, training=self.training)
 | 
			
		||||
        attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
 | 
			
		||||
    invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
 | 
			
		||||
                      "`attn_output` should be of size "
 | 
			
		||||
                      f"{(bsz, self.num_heads, q_len, self.head_dim)},"
 | 
			
		||||
                      f" but is {attn_output.size()}")
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
			
		||||
 | 
			
		||||
    attn_output = self.o_proj(attn_output)
 | 
			
		||||
 | 
			
		||||
    if not output_attentions:
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
 | 
			
		||||
    return attn_output, attn_weights, past_key_value
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def cohere_attention_forward_origin(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | 
			
		||||
    output_attentions: bool = False,
 | 
			
		||||
    use_cache: bool = False,
 | 
			
		||||
    cache_position: Optional[torch.LongTensor] = None,
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
			
		||||
    bsz, q_len, _ = hidden_states.size()
 | 
			
		||||
    device = hidden_states.device
 | 
			
		||||
    use_fuse_rope = should_use_fuse_rope(hidden_states, position_ids, self.training)
 | 
			
		||||
    enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx)
 | 
			
		||||
    decoding_fast_path = use_decoding_fast_path(self.q_proj,
 | 
			
		||||
                                                use_fuse_rope,
 | 
			
		||||
                                                enough_kv_room,
 | 
			
		||||
                                                bsz * q_len)
 | 
			
		||||
    if decoding_fast_path:
 | 
			
		||||
        hidden_states = hidden_states.view(1, -1)
 | 
			
		||||
        cache_k = past_key_value.key_cache[self.layer_idx]
 | 
			
		||||
        cache_v = past_key_value.value_cache[self.layer_idx]
 | 
			
		||||
        kv_seq_len = cache_k.shape[-2]
 | 
			
		||||
        import xe_linear
 | 
			
		||||
        query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
 | 
			
		||||
                                                                       self.q_proj.weight,
 | 
			
		||||
                                                                       self.k_proj.weight,
 | 
			
		||||
                                                                       self.v_proj.weight,
 | 
			
		||||
                                                                       position_ids,
 | 
			
		||||
                                                                       cache_k, cache_v,
 | 
			
		||||
                                                                       self.q_proj.weight.qtype,
 | 
			
		||||
                                                                       self.v_proj.weight.qtype,
 | 
			
		||||
                                                                       kv_seq_len,
 | 
			
		||||
                                                                       self.head_dim,
 | 
			
		||||
                                                                       self.rotary_emb.base,)
 | 
			
		||||
        kv_seq_len += 1
 | 
			
		||||
        # update past_key_value's seem_tokens and kv caches.
 | 
			
		||||
        if self.layer_idx == 0:
 | 
			
		||||
            past_key_value._seen_tokens = kv_seq_len
 | 
			
		||||
        past_key_value.key_cache[self.layer_idx] = key_states
 | 
			
		||||
        past_key_value.value_cache[self.layer_idx] = value_states
 | 
			
		||||
    else:
 | 
			
		||||
        query_states = self.q_proj(hidden_states)
 | 
			
		||||
        key_states = self.k_proj(hidden_states)
 | 
			
		||||
        value_states = self.v_proj(hidden_states)
 | 
			
		||||
 | 
			
		||||
        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim)
 | 
			
		||||
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
 | 
			
		||||
        if self.use_qk_norm:
 | 
			
		||||
            query_states = self.q_norm(query_states)
 | 
			
		||||
            key_states = self.k_norm(key_states)
 | 
			
		||||
 | 
			
		||||
        query_states = query_states.transpose(1, 2)
 | 
			
		||||
        key_states = key_states.transpose(1, 2)
 | 
			
		||||
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads,
 | 
			
		||||
                                         self.head_dim).transpose(1, 2)
 | 
			
		||||
 | 
			
		||||
        past_key_value = getattr(self, "past_key_value", past_key_value)
 | 
			
		||||
        kv_seq_len = key_states.shape[-2]
 | 
			
		||||
        if past_key_value is not None:
 | 
			
		||||
            if self.layer_idx is None:
 | 
			
		||||
                invalidInputError(
 | 
			
		||||
                    False,
 | 
			
		||||
                    "The cache structure has changed since version v4.36. "
 | 
			
		||||
                    f"If you are using {self.__class__.__name__} "
 | 
			
		||||
                    "for auto-regressive decoding with k/v caching, "
 | 
			
		||||
                    "please make sure to initialize the attention class with a layer index."
 | 
			
		||||
                )
 | 
			
		||||
            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
 | 
			
		||||
        cos, sin = self.rotary_emb(value_states, position_ids)
 | 
			
		||||
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
 | 
			
		||||
 | 
			
		||||
        if past_key_value is not None:
 | 
			
		||||
            if self.layer_idx == 0:
 | 
			
		||||
                past_key_value._seen_tokens += key_states.shape[-2]
 | 
			
		||||
 | 
			
		||||
            if len(past_key_value.key_cache) <= self.layer_idx:
 | 
			
		||||
                past_key_value.key_cache.append(key_states)
 | 
			
		||||
                past_key_value.value_cache.append(value_states)
 | 
			
		||||
            else:
 | 
			
		||||
                cache_k = past_key_value.key_cache[self.layer_idx]
 | 
			
		||||
                cache_v = past_key_value.value_cache[self.layer_idx]
 | 
			
		||||
 | 
			
		||||
                if not enough_kv_room:
 | 
			
		||||
                    # allocate new
 | 
			
		||||
                    new_c_k, new_c_v = extend_kv_cache(bsz,
 | 
			
		||||
                                                       self.num_key_value_heads,  # Support GQA
 | 
			
		||||
                                                       self.head_dim,
 | 
			
		||||
                                                       cache_k.size(2),
 | 
			
		||||
                                                       kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
			
		||||
                                                       dtype=cache_k.dtype,
 | 
			
		||||
                                                       device=device)
 | 
			
		||||
 | 
			
		||||
                    new_c_k[:] = cache_k
 | 
			
		||||
                    new_c_v[:] = cache_v
 | 
			
		||||
                    cache_k = new_c_k
 | 
			
		||||
                    cache_v = new_c_v
 | 
			
		||||
 | 
			
		||||
                key_states, value_states = append_kv_cache(cache_k,
 | 
			
		||||
                                                           cache_v,
 | 
			
		||||
                                                           key_states,
 | 
			
		||||
                                                           value_states)
 | 
			
		||||
 | 
			
		||||
                # update past_key_value
 | 
			
		||||
                past_key_value.key_cache[self.layer_idx] = key_states
 | 
			
		||||
                past_key_value.value_cache[self.layer_idx] = value_states
 | 
			
		||||
 | 
			
		||||
    key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
			
		||||
    value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
			
		||||
 | 
			
		||||
    if not self.training and not hidden_states.requires_grad and \
 | 
			
		||||
            use_flash_attention(query_states, key_states, attention_mask):
 | 
			
		||||
        attn_output = F.scaled_dot_product_attention(query_states.to(device, dtype=torch.float16),
 | 
			
		||||
                                                     key_states.to(device, dtype=torch.float16),
 | 
			
		||||
                                                     value_states.to(device, dtype=torch.float16),
 | 
			
		||||
                                                     is_causal=True)
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
    elif not self.training and not hidden_states.requires_grad and \
 | 
			
		||||
            use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
 | 
			
		||||
        else:
 | 
			
		||||
            causal_mask = None
 | 
			
		||||
        attn_output = xe_addons.sdp(query_states, key_states, value_states, causal_mask)
 | 
			
		||||
        attn_output = attn_output.view(query_states.shape)
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
    else:
 | 
			
		||||
        attn_weights = torch.matmul(query_states,
 | 
			
		||||
                                    key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
        if attention_mask is not None:  # no matter the length, we just slice it
 | 
			
		||||
            causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
 | 
			
		||||
            attn_weights = attn_weights + causal_mask
 | 
			
		||||
 | 
			
		||||
        # upcast attention to fp32
 | 
			
		||||
        attn_weights = nn.functional.softmax(attn_weights,
 | 
			
		||||
                                             dim=-1, dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
        attn_weights = nn.functional.dropout(attn_weights,
 | 
			
		||||
                                             p=self.attention_dropout, training=self.training)
 | 
			
		||||
        attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
 | 
			
		||||
    invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
 | 
			
		||||
                      "`attn_output` should be of size "
 | 
			
		||||
                      f"{(bsz, self.num_heads, q_len, self.head_dim)},"
 | 
			
		||||
                      f" but is {attn_output.size()}")
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
			
		||||
 | 
			
		||||
    attn_output = self.o_proj(attn_output)
 | 
			
		||||
 | 
			
		||||
    if not output_attentions:
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
 | 
			
		||||
    return attn_output.to(hidden_states.dtype), attn_weights, past_key_value
 | 
			
		||||
| 
						 | 
				
			
			@ -53,10 +53,10 @@ def siglip_attention_forward(
 | 
			
		|||
    qkv = qkv.transpose(1, 2)
 | 
			
		||||
    query_states, key_states, value_states = qkv.chunk(3, dim=1)
 | 
			
		||||
 | 
			
		||||
    from ipex_llm.transformers.utils import get_xpu_device_type
 | 
			
		||||
    from ipex_llm.transformers.utils import get_xpu_device_name
 | 
			
		||||
    if (
 | 
			
		||||
        self.head_dim == 72
 | 
			
		||||
        and get_xpu_device_type(query_states) in ["arc", "flex"] and
 | 
			
		||||
        and get_xpu_device_name(query_states.device) == "arc" and
 | 
			
		||||
        query_states.dtype in [torch.float, torch.half]
 | 
			
		||||
    ):
 | 
			
		||||
        n_heads, kv_length = query_states.size(1), key_states.size(2)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,576 +0,0 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
# Some parts of this file is adapted from
 | 
			
		||||
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/mixtral/modeling_mixtral.py
 | 
			
		||||
 | 
			
		||||
# coding=utf-8
 | 
			
		||||
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
 | 
			
		||||
#
 | 
			
		||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
 | 
			
		||||
# and OPT implementations in this library. It has been modified from its
 | 
			
		||||
# original forms to accommodate minor architectural differences compared
 | 
			
		||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
 | 
			
		||||
""" PyTorch Mixtral model."""
 | 
			
		||||
import math
 | 
			
		||||
from typing import Optional, Tuple, Union, List
 | 
			
		||||
from transformers.modeling_outputs import MoeModelOutputWithPast
 | 
			
		||||
from transformers.cache_utils import Cache, DynamicCache
 | 
			
		||||
from transformers.modeling_attn_mask_utils import (
 | 
			
		||||
    _prepare_4d_causal_attention_mask,
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from torch import nn
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
from ipex_llm.ggml.quantize import ggml_tensor_qtype
 | 
			
		||||
from ipex_llm.utils.common import invalidInputError
 | 
			
		||||
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
 | 
			
		||||
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb, is_enough_kv_cache_room_4_36
 | 
			
		||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_decoding_fast_path
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp
 | 
			
		||||
from ipex_llm.transformers.models.utils import mlp_fusion_check, SILU
 | 
			
		||||
from ipex_llm.transformers.low_bit_linear import IQ2_XXS
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
 | 
			
		||||
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
 | 
			
		||||
    """
 | 
			
		||||
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).
 | 
			
		||||
    The hidden states go from (batch, num_key_value_heads, seqlen, head_dim)
 | 
			
		||||
    to (batch, num_attention_heads, seqlen, head_dim)
 | 
			
		||||
    """
 | 
			
		||||
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
 | 
			
		||||
    if n_rep == 1:
 | 
			
		||||
        return hidden_states
 | 
			
		||||
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads,
 | 
			
		||||
                                                           n_rep, slen, head_dim)
 | 
			
		||||
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def mixtral_moeblock_forward(self,
 | 
			
		||||
                             hidden_states: torch.Tensor):
 | 
			
		||||
    batch_size, sequence_length, hidden_dim = hidden_states.shape
 | 
			
		||||
    hidden_states = hidden_states.view(-1, hidden_dim)
 | 
			
		||||
    bs = hidden_states.shape[0]
 | 
			
		||||
    # router_logits: (batch * sequence_length, n_experts)
 | 
			
		||||
    router_logits = self.gate(hidden_states)
 | 
			
		||||
 | 
			
		||||
    routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
 | 
			
		||||
    routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
 | 
			
		||||
    routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
 | 
			
		||||
    # we cast back to the input dtype
 | 
			
		||||
    routing_weights = routing_weights.to(hidden_states.dtype)
 | 
			
		||||
 | 
			
		||||
    if bs == 1:
 | 
			
		||||
        selected_experts = selected_experts[0].cpu().tolist()
 | 
			
		||||
        for idx in range(self.top_k):
 | 
			
		||||
            exp_id = selected_experts[idx]
 | 
			
		||||
            expert_layer = self.experts[exp_id]
 | 
			
		||||
            weight = routing_weights[:, idx]
 | 
			
		||||
            if idx == 0:
 | 
			
		||||
                final_hidden_states = expert_layer(hidden_states, weight)
 | 
			
		||||
            else:
 | 
			
		||||
                final_hidden_states = final_hidden_states + expert_layer(hidden_states, weight)
 | 
			
		||||
    elif bs < 256 and hidden_states.device.type == 'xpu':
 | 
			
		||||
        final_hidden_states = torch.zeros((batch_size * sequence_length, hidden_dim),
 | 
			
		||||
                                          dtype=hidden_states.dtype, device=hidden_states.device)
 | 
			
		||||
        import xe_linear
 | 
			
		||||
        indexes = xe_linear.get_moe_indexes(selected_experts.to(torch.int32).cpu(), 8)
 | 
			
		||||
        for expert_idx in range(self.num_experts):
 | 
			
		||||
            expert_layer = self.experts[expert_idx]
 | 
			
		||||
            idx_list = indexes[0][expert_idx]
 | 
			
		||||
            top_x_list = indexes[1][expert_idx]
 | 
			
		||||
            if len(idx_list) == 0:
 | 
			
		||||
                continue
 | 
			
		||||
 | 
			
		||||
            top_x = torch.tensor(top_x_list, dtype=torch.long, device=hidden_states.device)
 | 
			
		||||
            current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
 | 
			
		||||
            current_hidden_states = expert_layer(current_state,
 | 
			
		||||
                                                 routing_weights[top_x_list, idx_list, None])
 | 
			
		||||
            final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
 | 
			
		||||
    else:
 | 
			
		||||
        final_hidden_states = torch.zeros(
 | 
			
		||||
            (batch_size * sequence_length, hidden_dim),
 | 
			
		||||
            dtype=hidden_states.dtype,
 | 
			
		||||
            device=hidden_states.device
 | 
			
		||||
        )
 | 
			
		||||
        # One hot encode the selected experts to create an expert mask
 | 
			
		||||
        # this will be used to easily index which expert is going to be sollicitated
 | 
			
		||||
        expert_mask = torch.nn.functional.one_hot(selected_experts,
 | 
			
		||||
                                                  num_classes=self.num_experts).permute(2, 1, 0)
 | 
			
		||||
 | 
			
		||||
        # Loop over all available experts in the model and perform the computation on each expert
 | 
			
		||||
        for expert_idx in range(self.num_experts):
 | 
			
		||||
            expert_layer = self.experts[expert_idx]
 | 
			
		||||
            idx, top_x = torch.where(expert_mask[expert_idx])
 | 
			
		||||
 | 
			
		||||
            if top_x.shape[0] == 0:
 | 
			
		||||
                continue
 | 
			
		||||
 | 
			
		||||
            # in torch it is faster to index using lists than torch tensors
 | 
			
		||||
            top_x_list = top_x.tolist()
 | 
			
		||||
            idx_list = idx.tolist()
 | 
			
		||||
 | 
			
		||||
            # Index the correct hidden states and compute the expert hidden state for
 | 
			
		||||
            # the current expert. We need to make sure to multiply the output hidden
 | 
			
		||||
            # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
 | 
			
		||||
            current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
 | 
			
		||||
            current_hidden_states = expert_layer(current_state,
 | 
			
		||||
                                                 routing_weights[top_x_list, idx_list, None])
 | 
			
		||||
 | 
			
		||||
            # However `index_add_` only support torch tensors for indexing so we'll use
 | 
			
		||||
            # the `top_x` tensor here.
 | 
			
		||||
            final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
 | 
			
		||||
 | 
			
		||||
    final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
 | 
			
		||||
    return final_hidden_states, router_logits
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def mixtral_attention_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor]=None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor]=None,
 | 
			
		||||
    past_key_value: Optional[Tuple[torch.Tensor]]=None,
 | 
			
		||||
    output_attentions: bool=False,
 | 
			
		||||
    use_cache: bool=False,
 | 
			
		||||
    padding_mask: Optional[torch.Tensor]=None,
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
			
		||||
    bsz, q_len, _ = hidden_states.size()
 | 
			
		||||
    device = hidden_states.device
 | 
			
		||||
    # for flash attention
 | 
			
		||||
    original_dtype = hidden_states.dtype
 | 
			
		||||
 | 
			
		||||
    use_fuse_rope = should_use_fuse_rope(hidden_states, position_ids, self.training)
 | 
			
		||||
    enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx)
 | 
			
		||||
    decoding_fast_path = use_decoding_fast_path(self.q_proj,
 | 
			
		||||
                                                use_fuse_rope,
 | 
			
		||||
                                                enough_kv_room,
 | 
			
		||||
                                                bsz * q_len)
 | 
			
		||||
 | 
			
		||||
    if decoding_fast_path:
 | 
			
		||||
        hidden_states = hidden_states.view(1, -1)
 | 
			
		||||
        cache_k = past_key_value.key_cache[self.layer_idx]
 | 
			
		||||
        cache_v = past_key_value.value_cache[self.layer_idx]
 | 
			
		||||
        kv_seq_len = cache_k.shape[-2]
 | 
			
		||||
        import xe_linear
 | 
			
		||||
        query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
 | 
			
		||||
                                                                       self.q_proj.weight,
 | 
			
		||||
                                                                       self.k_proj.weight,
 | 
			
		||||
                                                                       self.v_proj.weight,
 | 
			
		||||
                                                                       position_ids,
 | 
			
		||||
                                                                       cache_k, cache_v,
 | 
			
		||||
                                                                       self.q_proj.weight.qtype,
 | 
			
		||||
                                                                       self.v_proj.weight.qtype,
 | 
			
		||||
                                                                       kv_seq_len,
 | 
			
		||||
                                                                       self.head_dim,
 | 
			
		||||
                                                                       self.rotary_emb.base,)
 | 
			
		||||
        kv_seq_len += 1
 | 
			
		||||
        # update past_key_value's seem_tokens and kv caches.
 | 
			
		||||
        if self.layer_idx == 0:
 | 
			
		||||
            past_key_value.seen_tokens = kv_seq_len
 | 
			
		||||
        past_key_value.key_cache[self.layer_idx] = key_states
 | 
			
		||||
        past_key_value.value_cache[self.layer_idx] = value_states
 | 
			
		||||
    # diasble it for now as it will cause output change for unknown reason
 | 
			
		||||
    # elif decoding_fast_path and self.q_proj.qtype == IQ2_XXS:
 | 
			
		||||
    #     # this path self.v_proj use q4_0
 | 
			
		||||
    #     hidden_states = hidden_states.view(1, -1)
 | 
			
		||||
    #     cache_k = past_key_value.key_cache[self.layer_idx]
 | 
			
		||||
    #     cache_v = past_key_value.value_cache[self.layer_idx]
 | 
			
		||||
    #     kv_seq_len = cache_k.shape[-2]
 | 
			
		||||
    #     import xe_linear
 | 
			
		||||
    #     query_states, key_states = xe_linear.forward_qk(hidden_states,
 | 
			
		||||
    #                                                       self.q_proj.weight,
 | 
			
		||||
    #                                                       self.k_proj.weight,
 | 
			
		||||
    #                                                       position_ids,
 | 
			
		||||
    #                                                       cache_k,
 | 
			
		||||
    #                                                       self.q_proj.weight.qtype,
 | 
			
		||||
    #                                                       kv_seq_len,
 | 
			
		||||
    #                                                       self.head_dim,
 | 
			
		||||
    #                                                       10000)
 | 
			
		||||
    #     kv_seq_len += 1
 | 
			
		||||
    #     # update past_key_value's seem_tokens and kv caches.
 | 
			
		||||
    #     if self.layer_idx == 0:
 | 
			
		||||
    #         past_key_value.seen_tokens = kv_seq_len
 | 
			
		||||
    #     # update value_states
 | 
			
		||||
    #     value_states = self.v_proj(hidden_states)
 | 
			
		||||
    #     value_states = value_states.view(bsz, q_len,
 | 
			
		||||
    #                                      self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
    #     new_size = (cache_v.size(0),
 | 
			
		||||
    #                 cache_v.size(1),
 | 
			
		||||
    #                 cache_v.size(2) + value_states.size(2),
 | 
			
		||||
    #                 cache_v.size(3))
 | 
			
		||||
    #     new_cache_v = cache_v.as_strided(new_size, cache_v.stride(), storage_offset=0)
 | 
			
		||||
    #     new_cache_v[:, :, cache_v.size(2):cache_v.size(2)+value_states.size(2), :] = value_states
 | 
			
		||||
 | 
			
		||||
    #     past_key_value.key_cache[self.layer_idx] = key_states
 | 
			
		||||
    #     past_key_value.value_cache[self.layer_idx] = new_cache_v
 | 
			
		||||
    else:
 | 
			
		||||
        query_states = self.q_proj(hidden_states)
 | 
			
		||||
        key_states = self.k_proj(hidden_states)
 | 
			
		||||
        value_states = self.v_proj(hidden_states)
 | 
			
		||||
 | 
			
		||||
        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
        key_states = key_states.view(bsz, q_len,
 | 
			
		||||
                                     self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
        value_states = value_states.view(bsz, q_len,
 | 
			
		||||
                                         self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
 | 
			
		||||
        kv_seq_len = key_states.shape[-2]
 | 
			
		||||
        if past_key_value is not None:
 | 
			
		||||
            if self.layer_idx is None:
 | 
			
		||||
                invalidInputError(False,
 | 
			
		||||
                                  "The cache structure has changed since version v4.36. "
 | 
			
		||||
                                  f"If you are using {self.__class__.__name__} for "
 | 
			
		||||
                                  "auto-regressive decodingwith k/v caching, please make sure "
 | 
			
		||||
                                  "to initialize the attention class with a layer index.")
 | 
			
		||||
            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
 | 
			
		||||
 | 
			
		||||
        if use_fuse_rope:
 | 
			
		||||
            import xe_addons
 | 
			
		||||
            xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
 | 
			
		||||
                                           query_states, key_states)
 | 
			
		||||
        else:
 | 
			
		||||
            cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
			
		||||
            query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
			
		||||
                                                            cos, sin, position_ids, "mixtral")
 | 
			
		||||
 | 
			
		||||
        if past_key_value is not None:
 | 
			
		||||
            # update the number of seen tokens
 | 
			
		||||
            if self.layer_idx == 0:
 | 
			
		||||
                past_key_value.seen_tokens += key_states.shape[-2]
 | 
			
		||||
 | 
			
		||||
            # reuse k, v, self_attention
 | 
			
		||||
            # update `past_key_value` with `key_states` and `value_states` for layer `layer_idx`
 | 
			
		||||
            if len(past_key_value.key_cache) <= self.layer_idx:
 | 
			
		||||
                past_key_value.key_cache.append(key_states)
 | 
			
		||||
                past_key_value.value_cache.append(value_states)
 | 
			
		||||
            else:
 | 
			
		||||
                cache_k = past_key_value.key_cache[self.layer_idx]
 | 
			
		||||
                cache_v = past_key_value.value_cache[self.layer_idx]
 | 
			
		||||
 | 
			
		||||
                if not enough_kv_room:
 | 
			
		||||
                    # allocate new
 | 
			
		||||
                    new_c_k, new_c_v = extend_kv_cache(bsz,
 | 
			
		||||
                                                       self.num_key_value_heads,  # Support GQA
 | 
			
		||||
                                                       self.head_dim,
 | 
			
		||||
                                                       cache_k.size(2),
 | 
			
		||||
                                                       kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
			
		||||
                                                       dtype=cache_k.dtype,
 | 
			
		||||
                                                       device=device)
 | 
			
		||||
 | 
			
		||||
                    new_c_k[:] = cache_k
 | 
			
		||||
                    new_c_v[:] = cache_v
 | 
			
		||||
                    cache_k = new_c_k
 | 
			
		||||
                    cache_v = new_c_v
 | 
			
		||||
 | 
			
		||||
                key_states, value_states = append_kv_cache(cache_k,
 | 
			
		||||
                                                           cache_v,
 | 
			
		||||
                                                           key_states,
 | 
			
		||||
                                                           value_states)
 | 
			
		||||
 | 
			
		||||
                # update past_key_value
 | 
			
		||||
                past_key_value.key_cache[self.layer_idx] = key_states
 | 
			
		||||
                past_key_value.value_cache[self.layer_idx] = value_states
 | 
			
		||||
 | 
			
		||||
    if not self.training and not hidden_states.requires_grad:
 | 
			
		||||
        fsdp_flag = use_flash_attention(query_states, key_states)
 | 
			
		||||
    else:
 | 
			
		||||
        fsdp_flag = False
 | 
			
		||||
    if fsdp_flag:
 | 
			
		||||
        attention_dtype = torch.float16  # use fp16 for flash attention
 | 
			
		||||
    else:
 | 
			
		||||
        attention_dtype = original_dtype
 | 
			
		||||
 | 
			
		||||
    # repeat k/v heads if n_kv_heads < n_heads
 | 
			
		||||
    key_states = repeat_kv(key_states, self.num_key_value_groups).to(device,
 | 
			
		||||
                                                                     dtype=attention_dtype)
 | 
			
		||||
    value_states = repeat_kv(value_states, self.num_key_value_groups).to(device,
 | 
			
		||||
                                                                         dtype=attention_dtype)
 | 
			
		||||
 | 
			
		||||
    if fsdp_flag:
 | 
			
		||||
        attn_output = F.scaled_dot_product_attention(query_states.to(dtype=attention_dtype),
 | 
			
		||||
                                                     key_states,
 | 
			
		||||
                                                     value_states,
 | 
			
		||||
                                                     is_causal=True)
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
    elif use_sdp(query_states.shape[2], key_states.shape[2], self.head_dim, query_states):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask)
 | 
			
		||||
        attn_output = attn_output.view(query_states.shape)
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
    else:
 | 
			
		||||
        attn_weights = torch.matmul(
 | 
			
		||||
            query_states.to(key_states.dtype),
 | 
			
		||||
            key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
        if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
 | 
			
		||||
            invalidInputError(
 | 
			
		||||
                False,
 | 
			
		||||
                f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)},"
 | 
			
		||||
                f" but is {attn_weights.size()}"
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
 | 
			
		||||
                invalidInputError(
 | 
			
		||||
                    False,
 | 
			
		||||
                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)},"
 | 
			
		||||
                    f" but is {attention_mask.size()}"
 | 
			
		||||
                )
 | 
			
		||||
 | 
			
		||||
            attn_weights = attn_weights + attention_mask
 | 
			
		||||
 | 
			
		||||
        # upcast attention to fp32
 | 
			
		||||
        attn_weights = nn.functional.\
 | 
			
		||||
            softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
 | 
			
		||||
        attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
 | 
			
		||||
    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
 | 
			
		||||
        invalidInputError(
 | 
			
		||||
            False,
 | 
			
		||||
            f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)},"
 | 
			
		||||
            f" but is {attn_output.size()}"
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
			
		||||
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
			
		||||
 | 
			
		||||
    attn_output = self.o_proj(attn_output)
 | 
			
		||||
 | 
			
		||||
    if not output_attentions:
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
 | 
			
		||||
    return attn_output, attn_weights, past_key_value
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def mixtral_mlp_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    x: torch.Tensor,
 | 
			
		||||
    routing_weights
 | 
			
		||||
) -> torch.Tensor:
 | 
			
		||||
    qtype = getattr(self.w1, "qtype", None)
 | 
			
		||||
    if mlp_fusion_check(x, qtype, self.training):
 | 
			
		||||
        import xe_linear
 | 
			
		||||
        return self.w2(xe_linear.mlp_forward_xpu(
 | 
			
		||||
            x, self.w1.weight.data, self.w3.weight.data,
 | 
			
		||||
            x.shape[0], x.shape[1], self.w1.out_len,
 | 
			
		||||
            SILU, qtype,
 | 
			
		||||
        )) * routing_weights
 | 
			
		||||
    else:
 | 
			
		||||
        current_hidden_states = self.act_fn(self.w1(x)) * self.w3(x)
 | 
			
		||||
        current_hidden_states = self.w2(current_hidden_states)
 | 
			
		||||
        return routing_weights * current_hidden_states
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def mixtral_model_forward(
 | 
			
		||||
        self,
 | 
			
		||||
        input_ids: torch.LongTensor = None,
 | 
			
		||||
        attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
        position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
        past_key_values: Optional[List[torch.FloatTensor]] = None,
 | 
			
		||||
        inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
			
		||||
        use_cache: Optional[bool] = None,
 | 
			
		||||
        output_attentions: Optional[bool] = None,
 | 
			
		||||
        output_hidden_states: Optional[bool] = None,
 | 
			
		||||
        output_router_logits: Optional[bool] = None,
 | 
			
		||||
        return_dict: Optional[bool] = None,
 | 
			
		||||
) -> Union[Tuple, MoeModelOutputWithPast]:
 | 
			
		||||
    # to be compatible with transformers>=4.37.0
 | 
			
		||||
    self._use_flash_attention_2 = self.config._attn_implementation == "flash_attention_2"
 | 
			
		||||
 | 
			
		||||
    output_attentions = output_attentions if output_attentions is not None \
 | 
			
		||||
        else self.config.output_attentions
 | 
			
		||||
    output_router_logits = (
 | 
			
		||||
        output_router_logits if output_router_logits is not None
 | 
			
		||||
        else self.config.output_router_logits
 | 
			
		||||
    )
 | 
			
		||||
    output_hidden_states = (
 | 
			
		||||
        output_hidden_states if output_hidden_states is not None else
 | 
			
		||||
        self.config.output_hidden_states
 | 
			
		||||
    )
 | 
			
		||||
    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
			
		||||
 | 
			
		||||
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
 | 
			
		||||
 | 
			
		||||
    # retrieve input_ids and inputs_embeds
 | 
			
		||||
    if input_ids is not None and inputs_embeds is not None:
 | 
			
		||||
        invalidInputError(False, "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")  # noqa
 | 
			
		||||
    elif input_ids is not None:
 | 
			
		||||
        batch_size, seq_length = input_ids.shape
 | 
			
		||||
    elif inputs_embeds is not None:
 | 
			
		||||
        batch_size, seq_length, _ = inputs_embeds.shape
 | 
			
		||||
    else:
 | 
			
		||||
        invalidInputError(False, "You have to specify either decoder_input_ids or decoder_inputs_embeds")  # noqa
 | 
			
		||||
 | 
			
		||||
    past_key_values_length = 0
 | 
			
		||||
 | 
			
		||||
    if use_cache:
 | 
			
		||||
        use_legacy_cache = not isinstance(past_key_values, Cache)
 | 
			
		||||
        if use_legacy_cache:
 | 
			
		||||
            past_key_values = DynamicCache.from_legacy_cache(past_key_values)
 | 
			
		||||
        past_key_values_length = past_key_values.get_usable_length(seq_length)
 | 
			
		||||
 | 
			
		||||
    if position_ids is None:
 | 
			
		||||
        device = input_ids.device if input_ids is not None else inputs_embeds.device
 | 
			
		||||
        position_ids = torch.arange(
 | 
			
		||||
            past_key_values_length, seq_length + past_key_values_length,
 | 
			
		||||
            dtype=torch.long, device=device
 | 
			
		||||
        )
 | 
			
		||||
        position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
 | 
			
		||||
    else:
 | 
			
		||||
        position_ids = position_ids.view(-1, seq_length).long()
 | 
			
		||||
 | 
			
		||||
    if inputs_embeds is None:
 | 
			
		||||
        inputs_embeds = self.embed_tokens(input_ids)
 | 
			
		||||
 | 
			
		||||
    if attention_mask is not None and self._use_flash_attention_2 and use_cache:
 | 
			
		||||
        is_padding_right = attention_mask[:, -1].sum().item() != batch_size
 | 
			
		||||
        if is_padding_right:
 | 
			
		||||
            invalidInputError(
 | 
			
		||||
                False,
 | 
			
		||||
                "You are attempting to perform batched generation with padding_side='right'"
 | 
			
		||||
                " this may lead to unexpected behaviour for Flash Attention version of Mixtral. Make sure to "  # noqa
 | 
			
		||||
                " call `tokenizer.padding_side  = 'left'` before tokenizing the input. "
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
    if self._use_flash_attention_2:
 | 
			
		||||
        # 2d mask is passed through the layers
 | 
			
		||||
        attention_mask = attention_mask \
 | 
			
		||||
            if (attention_mask is not None and 0 in attention_mask) else None
 | 
			
		||||
    else:
 | 
			
		||||
        # 4d mask is passed through the layers
 | 
			
		||||
        attention_mask = _prepare_4d_causal_attention_mask(
 | 
			
		||||
            attention_mask,
 | 
			
		||||
            (batch_size, seq_length),
 | 
			
		||||
            inputs_embeds,
 | 
			
		||||
            past_key_values_length,
 | 
			
		||||
            sliding_window=self.config.sliding_window,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    hidden_states = inputs_embeds
 | 
			
		||||
 | 
			
		||||
    if self.gradient_checkpointing and self.training:
 | 
			
		||||
        if use_cache:
 | 
			
		||||
            logger.warning_once(
 | 
			
		||||
                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."  # noqa
 | 
			
		||||
            )
 | 
			
		||||
            use_cache = False
 | 
			
		||||
 | 
			
		||||
    # decoder layers
 | 
			
		||||
    all_hidden_states = () if output_hidden_states else None
 | 
			
		||||
    all_self_attns = () if output_attentions else None
 | 
			
		||||
    all_router_logits = () if output_router_logits else None
 | 
			
		||||
    next_decoder_cache = None
 | 
			
		||||
 | 
			
		||||
    for decoder_layer in self.layers:
 | 
			
		||||
        if output_hidden_states:
 | 
			
		||||
            all_hidden_states += (hidden_states,)
 | 
			
		||||
 | 
			
		||||
        if self.gradient_checkpointing and self.training:
 | 
			
		||||
            layer_outputs = self._gradient_checkpointing_func(
 | 
			
		||||
                decoder_layer.__call__,
 | 
			
		||||
                hidden_states,
 | 
			
		||||
                attention_mask,
 | 
			
		||||
                position_ids,
 | 
			
		||||
                past_key_values,
 | 
			
		||||
                output_attentions,
 | 
			
		||||
                output_router_logits,
 | 
			
		||||
                use_cache,
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            # bigdl-llm changes:
 | 
			
		||||
            #
 | 
			
		||||
            # Avoid moving `attention_mask`` and `position_ids`` to other devices multiple times.
 | 
			
		||||
            #
 | 
			
		||||
            # When the model is partitioned on two different devices using
 | 
			
		||||
            # `accelerate`'s `dispatch``, a hook to move inputs to the correct device is
 | 
			
		||||
            # added to each layer's `forward``, which will result in moving `attention_mask`
 | 
			
		||||
            # and `position_ids`, which allocated on device:0, to other devices for each
 | 
			
		||||
            # decoder layer not in device:0.
 | 
			
		||||
            #
 | 
			
		||||
            # To avoid this, we move `attention_mask` and `position_ids` to the device of
 | 
			
		||||
            # the current layer before the forward call, so that the moving is only done once
 | 
			
		||||
            # for each devices other than devie:0.
 | 
			
		||||
            #
 | 
			
		||||
            curr_device = decoder_layer.input_layernorm.weight.device
 | 
			
		||||
            if attention_mask is not None:
 | 
			
		||||
                attention_mask = attention_mask.to(curr_device)
 | 
			
		||||
            if position_ids is not None:
 | 
			
		||||
                position_ids = position_ids.to(curr_device)
 | 
			
		||||
            # bigdl-llm changes end
 | 
			
		||||
            layer_outputs = decoder_layer(
 | 
			
		||||
                hidden_states,
 | 
			
		||||
                attention_mask=attention_mask,
 | 
			
		||||
                position_ids=position_ids,
 | 
			
		||||
                past_key_value=past_key_values,
 | 
			
		||||
                output_attentions=output_attentions,
 | 
			
		||||
                output_router_logits=output_router_logits,
 | 
			
		||||
                use_cache=use_cache,
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        hidden_states = layer_outputs[0]
 | 
			
		||||
 | 
			
		||||
        if use_cache:
 | 
			
		||||
            next_decoder_cache = layer_outputs[2 if output_attentions else 1]
 | 
			
		||||
 | 
			
		||||
        if output_attentions:
 | 
			
		||||
            all_self_attns += (layer_outputs[1],)
 | 
			
		||||
 | 
			
		||||
        if output_router_logits:
 | 
			
		||||
            all_router_logits += (layer_outputs[-1],)
 | 
			
		||||
 | 
			
		||||
    hidden_states = self.norm(hidden_states)
 | 
			
		||||
 | 
			
		||||
    # add hidden states from the last decoder layer
 | 
			
		||||
    if output_hidden_states:
 | 
			
		||||
        all_hidden_states += (hidden_states,)
 | 
			
		||||
 | 
			
		||||
    next_cache = None
 | 
			
		||||
    if use_cache:
 | 
			
		||||
        next_cache = next_decoder_cache.to_legacy_cache() \
 | 
			
		||||
            if use_legacy_cache else next_decoder_cache
 | 
			
		||||
 | 
			
		||||
    if not return_dict:
 | 
			
		||||
        return tuple(
 | 
			
		||||
            v
 | 
			
		||||
            for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]  # noqa
 | 
			
		||||
            if v is not None
 | 
			
		||||
        )
 | 
			
		||||
    return MoeModelOutputWithPast(
 | 
			
		||||
        last_hidden_state=hidden_states,
 | 
			
		||||
        past_key_values=next_cache,
 | 
			
		||||
        hidden_states=all_hidden_states,
 | 
			
		||||
        attentions=all_self_attns,
 | 
			
		||||
        router_logits=all_router_logits,
 | 
			
		||||
    )
 | 
			
		||||
| 
						 | 
				
			
			@ -36,7 +36,7 @@ import math
 | 
			
		|||
import torch
 | 
			
		||||
from typing import Optional
 | 
			
		||||
 | 
			
		||||
from ipex_llm.transformers.utils import get_xpu_device_type
 | 
			
		||||
from ipex_llm.transformers.utils import get_xpu_device_name
 | 
			
		||||
from ipex_llm.transformers.models.common import padding_qkv_hd
 | 
			
		||||
from ipex_llm.transformers.models.common import scaled_dot_product_attention
 | 
			
		||||
from diffusers.models.attention_processor import Attention
 | 
			
		||||
| 
						 | 
				
			
			@ -144,7 +144,7 @@ class AttnProcessor2_0:
 | 
			
		|||
 | 
			
		||||
def upcast_vae(self):
 | 
			
		||||
    # workaround overflow and ipex's bugs
 | 
			
		||||
    if get_xpu_device_type(self.vae.post_quant_conv.weight) in ["arc", "flex", "pvc"]:
 | 
			
		||||
    if get_xpu_device_name(self.vae.post_quant_conv.weight.device) == "arc":
 | 
			
		||||
        self.vae.to(torch.bfloat16)
 | 
			
		||||
    else:
 | 
			
		||||
        self.vae.decoder.up_blocks.to(torch.bfloat16)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -19,7 +19,7 @@ import torch
 | 
			
		|||
import warnings
 | 
			
		||||
from ipex_llm.utils.common import invalidInputError
 | 
			
		||||
from ipex_llm.ggml.quantize import ggml_tensor_qtype
 | 
			
		||||
from ipex_llm.transformers.utils import get_ipex_version, get_xpu_device_type
 | 
			
		||||
from ipex_llm.transformers.utils import get_ipex_version, get_xpu_device_name
 | 
			
		||||
from ipex_llm.transformers.low_bit_linear import SYM_INT4, SYM_INT8, FP8E5, IQ2_XXS, FP4, FP8E4,\
 | 
			
		||||
    FP6, ASYM_INT4
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -85,16 +85,14 @@ def use_quantize_kv_cache(linear: torch.nn.Module, x: torch.Tensor, kv_group: in
 | 
			
		|||
        return os.environ["IPEX_LLM_QUANTIZE_KV_CACHE"] == "1"
 | 
			
		||||
    elif os.environ.get("IPEX_LLM_LOW_MEM", None) is not None:
 | 
			
		||||
        return os.environ["IPEX_LLM_LOW_MEM"] == "1"
 | 
			
		||||
    elif linear.qtype in [ggml_tensor_qtype["fp16"], ggml_tensor_qtype["bf16"]]:
 | 
			
		||||
        return False
 | 
			
		||||
    else:
 | 
			
		||||
        return x.device.type == 'xpu' and kv_cache_device_check(x, kv_group) \
 | 
			
		||||
            and hasattr(linear, "qtype") and \
 | 
			
		||||
            linear.qtype != ggml_tensor_qtype["fp16"] and linear.qtype != ggml_tensor_qtype["bf16"]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def kv_cache_device_check(x: torch.Tensor, kv_group: int) -> bool:
 | 
			
		||||
    return (get_xpu_device_type(x) in ["mtl", "lnl"] and kv_group <= 1) or \
 | 
			
		||||
        ((get_xpu_device_type(x) == "arc" or get_xpu_device_type(x) == "flex") and
 | 
			
		||||
            1 < x.size(0) and x.size(0) <= 8)
 | 
			
		||||
        device_name = get_xpu_device_name(x.device)
 | 
			
		||||
        return (
 | 
			
		||||
            device_name in ["mtl", "lnl", "arl"] and kv_group == 1
 | 
			
		||||
            or device_name in ["arc", "bmg"] and x.size(0) > 1
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def init_fp8_kv_cache(batch_size, num_heads, current_length, head_dim, device):
 | 
			
		||||
| 
						 | 
				
			
			@ -226,57 +224,6 @@ def is_enough_kv_cache_room_4_31(past_key_value, seq_len=1):
 | 
			
		|||
        (past_key_value[0].size(2) + seq_len) * past_key_value[0].size(3)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def use_flash_attention(query, key, attention_mask=None):
 | 
			
		||||
    # here we support query's shape is always [batch_size, head_num, q_len, head_dim],
 | 
			
		||||
    # key's shape is always [batch_size, head_num, k_len, head_dim]
 | 
			
		||||
    invalidInputError(query.dim() == 4,
 | 
			
		||||
                      "Here query input of use_flash_attention should be [batch_size, "
 | 
			
		||||
                      "head_num, q_len, head_dim]")
 | 
			
		||||
    invalidInputError(key.dim() == 4,
 | 
			
		||||
                      "Here key input of use_flash_attention should be [batch_size, "
 | 
			
		||||
                      "head_num, k_len, head_dim]")
 | 
			
		||||
    bsz, _, q_len, _ = query.size()
 | 
			
		||||
    k_len = key.size()[2]
 | 
			
		||||
    # check whether ipex flash attention can be used
 | 
			
		||||
    if q_len != k_len:
 | 
			
		||||
        # now only use flash attention for first token
 | 
			
		||||
        # as it seems have no performance benifit for rest token now
 | 
			
		||||
        return False
 | 
			
		||||
    if query.device.type != "xpu":
 | 
			
		||||
        # ipex flash attention only support for xpu
 | 
			
		||||
        return False
 | 
			
		||||
    ipex_version = get_ipex_version()
 | 
			
		||||
    if ipex_version <= "2.0.110+xpu":
 | 
			
		||||
        # ipex flash attention is supported from ipex 2.1
 | 
			
		||||
        return False
 | 
			
		||||
    if not torch.xpu.has_xetla():
 | 
			
		||||
        # ipex flash attention is only supported for xetla
 | 
			
		||||
        # may update this later
 | 
			
		||||
        return False
 | 
			
		||||
    elif get_xpu_device_type(query) != "pvc":
 | 
			
		||||
        return False
 | 
			
		||||
    if query.dtype not in [torch.float32, torch.float16]:
 | 
			
		||||
        # only use flash attention for fp32/fp16 input
 | 
			
		||||
        return False
 | 
			
		||||
    if bsz > 1:
 | 
			
		||||
        # as flash attention doesn't support attn_mask in ipex 2.1,
 | 
			
		||||
        # so it will cause output error for padded batch input
 | 
			
		||||
        if attention_mask is None:
 | 
			
		||||
            return True
 | 
			
		||||
        else:
 | 
			
		||||
            # TODO: below logic may change for different model
 | 
			
		||||
            # attention mask shape : [bsz, 1, q_len, k_len]
 | 
			
		||||
            if attention_mask[0].squeeze()[0, 0].item() != 0:
 | 
			
		||||
                # first batch contains padding
 | 
			
		||||
                # otherwise we suppose it should be a upper triangular matrix
 | 
			
		||||
                # at the same time, the diagonal is also 0
 | 
			
		||||
                return False
 | 
			
		||||
            elif not attention_mask.equal(attention_mask[0].repeat(bsz, 1, 1, 1)):
 | 
			
		||||
                # check whether mask of every batch is the same
 | 
			
		||||
                return False
 | 
			
		||||
    return True
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def use_sdp(q_len, kv_len, head_dim, query_states):
 | 
			
		||||
    return (
 | 
			
		||||
        query_states.device.type == "xpu"
 | 
			
		||||
| 
						 | 
				
			
			@ -315,38 +262,16 @@ def mlp_fusion_check(x, qtype, training):
 | 
			
		|||
    if training or x.requires_grad:
 | 
			
		||||
        return False
 | 
			
		||||
    if qtype == FP6:
 | 
			
		||||
        device = get_xpu_device_type(x)
 | 
			
		||||
        if device in ["mtl", "lnl"]:
 | 
			
		||||
        device = get_xpu_device_name(x.device)
 | 
			
		||||
        if device in ["mtl", "lnl", "arl"]:
 | 
			
		||||
            return False
 | 
			
		||||
    return True
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def use_decoding_fast_path(proj,
 | 
			
		||||
                           use_fuse_rope,
 | 
			
		||||
                           enough_kv_room,
 | 
			
		||||
                           bs,
 | 
			
		||||
                           qtype_check=decoding_fast_path_qtype_check):
 | 
			
		||||
    if proj is None:
 | 
			
		||||
        return False
 | 
			
		||||
    device = get_xpu_device_type(proj.weight)
 | 
			
		||||
    if not qtype_check(proj):
 | 
			
		||||
        return False
 | 
			
		||||
    if not use_fuse_rope:
 | 
			
		||||
        return False
 | 
			
		||||
    if not enough_kv_room:
 | 
			
		||||
        return False
 | 
			
		||||
    if bs != 1:
 | 
			
		||||
        return False
 | 
			
		||||
 | 
			
		||||
    if device in ["uhd"]:
 | 
			
		||||
        return False
 | 
			
		||||
    return True
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def use_xmx(x: torch.Tensor, qtype: int):
 | 
			
		||||
    device = get_xpu_device_type(x)
 | 
			
		||||
    device = get_xpu_device_name(x.device)
 | 
			
		||||
    return (
 | 
			
		||||
        device in ["arc", "flex", "pvc"]
 | 
			
		||||
        device in ["arc", "pvc"]
 | 
			
		||||
        and qtype in [SYM_INT4, SYM_INT8, FP8E4, FP8E5]
 | 
			
		||||
        and (
 | 
			
		||||
            (device == "pvc" and 1 < x.size(0) <= 16)
 | 
			
		||||
| 
						 | 
				
			
			@ -370,7 +295,7 @@ def fp16_fusion_check(proj, x, training):
 | 
			
		|||
        return False
 | 
			
		||||
    if x.requires_grad:
 | 
			
		||||
        return False
 | 
			
		||||
    device_type = get_xpu_device_type(x)
 | 
			
		||||
    device_type = get_xpu_device_name(x.device)
 | 
			
		||||
    if device_type != "pvc":
 | 
			
		||||
        return False
 | 
			
		||||
    return True
 | 
			
		||||
| 
						 | 
				
			
			@ -439,7 +364,7 @@ def should_use_compresskv(x: torch.Tensor, prompt_len: int):
 | 
			
		|||
    else:
 | 
			
		||||
        if use_compress_kv is None:
 | 
			
		||||
            return (
 | 
			
		||||
                get_xpu_device_type(x) in ["mtl", "lnl"]
 | 
			
		||||
                get_xpu_device_name(x.device) in ["mtl", "lnl", "arl"]
 | 
			
		||||
                and prompt_len >= 1800
 | 
			
		||||
                and prompt_len <= 4500
 | 
			
		||||
            )
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -168,27 +168,12 @@ def get_ipex_version():
 | 
			
		|||
    return _ipex_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_xpu_device_type(x):
 | 
			
		||||
    if x.device.type != "xpu":
 | 
			
		||||
        return x.device.type
 | 
			
		||||
    name = torch.xpu.get_device_name(x.device.index)
 | 
			
		||||
    if name.startswith("Intel(R) Arc(TM) A"):
 | 
			
		||||
        return "arc"
 | 
			
		||||
    elif name.startswith("Intel(R) Graphics [0xe20b]"):
 | 
			
		||||
        return "bmg"
 | 
			
		||||
    elif name.startswith("Intel(R) Arc(TM)"):
 | 
			
		||||
        if 'V' in name:
 | 
			
		||||
            return "lnl"
 | 
			
		||||
        else:
 | 
			
		||||
            return "mtl"
 | 
			
		||||
    elif name.startswith("Intel(R) Data Center GPU Flex"):
 | 
			
		||||
        return "flex"
 | 
			
		||||
    elif name.startswith("Intel(R) Data Center GPU Max"):
 | 
			
		||||
        return "pvc"
 | 
			
		||||
    elif name.startswith("Intel(R) UHD"):
 | 
			
		||||
        return "uhd"
 | 
			
		||||
def get_xpu_device_name(device: torch.device):
 | 
			
		||||
    if device.type != "xpu":
 | 
			
		||||
        return device.type
 | 
			
		||||
    else:
 | 
			
		||||
        return "others"
 | 
			
		||||
        import xe_linear
 | 
			
		||||
        return xe_linear.get_xpu_device_name(device)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def load_imatrix_data(imatrix_file):
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue