LLM: add replit and starcoder to gpu pytorch model example (#9154)
This commit is contained in:
parent
797b156a0d
commit
db7f938fdc
5 changed files with 270 additions and 0 deletions
|
|
@ -9,6 +9,10 @@ You can use `optimize_model` API to accelerate general PyTorch models on Intel G
|
|||
| ChatGLM2 | [link](chatglm2) |
|
||||
| Baichuan | [link](baichuan) |
|
||||
| Baichuan2 | [link](baichuan2) |
|
||||
| Replit | [link](replit) |
|
||||
| StarCoder | [link](starcoder) |
|
||||
| Dolly v1 | [link](dolly-v1) |
|
||||
| Dolly v2 | [link](dolly-v2) |
|
||||
|
||||
## Verified Hardware Platforms
|
||||
|
||||
|
|
|
|||
60
python/llm/example/GPU/PyTorch-Models/Model/replit/README.md
Normal file
60
python/llm/example/GPU/PyTorch-Models/Model/replit/README.md
Normal file
|
|
@ -0,0 +1,60 @@
|
|||
# Replit
|
||||
In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate Replit models. For illustration purposes, we utilize the [replit/replit-code-v1-3b](https://huggingface.co/replit/replit-code-v1-3b) as reference Replit models.
|
||||
|
||||
## Requirements
|
||||
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||
|
||||
## Example: Predict Tokens using `generate()` API
|
||||
In the example [generate.py](./generate.py), we show a basic use case for a Replit model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
|
||||
### 1. Install
|
||||
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
|
||||
|
||||
After installing conda, create a Python environment for BigDL-LLM:
|
||||
```bash
|
||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
||||
conda activate llm
|
||||
|
||||
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
|
||||
# you can install specific ipex/torch version for your need
|
||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables
|
||||
```bash
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
```
|
||||
|
||||
### 3. Run
|
||||
|
||||
For optimal performance on Arc, it is recommended to set several environment variables.
|
||||
|
||||
```bash
|
||||
export USE_XETLA=OFF
|
||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||
```
|
||||
|
||||
```bash
|
||||
python ./generate.py --prompt 'def print_hello_world():'
|
||||
```
|
||||
|
||||
In the example, several arguments can be passed to satisfy your requirements:
|
||||
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Replit model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'replit/replit-code-v1-3b'`.
|
||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `def print_hello_world():'`.
|
||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||
|
||||
#### 2.3 Sample Output
|
||||
#### [replit/replit-code-v1-3b](https://huggingface.co/replit/replit-code-v1-3b)
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Output --------------------
|
||||
def print_hello_world():
|
||||
print("Hello")
|
||||
print("World")
|
||||
|
||||
print_hello_world()
|
||||
|
||||
|
||||
def print_hello_world():
|
||||
print
|
||||
```
|
||||
|
|
@ -0,0 +1,73 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
import intel_extension_for_pytorch as ipex
|
||||
import time
|
||||
import argparse
|
||||
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from bigdl.llm import optimize_model
|
||||
|
||||
# you could tune the prompt based on your own model,
|
||||
REPLIT_PROMPT_FORMAT = "{prompt}"
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Replit model')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="replit/replit-code-v1-3b",
|
||||
help='The huggingface repo id for the Replit model to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--prompt', type=str, default="def print_hello_world():",
|
||||
help='Prompt to infer')
|
||||
parser.add_argument('--n-predict', type=int, default=32,
|
||||
help='Max tokens to predict')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
|
||||
# Load model
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||
trust_remote_code=True,
|
||||
torch_dtype='auto',
|
||||
low_cpu_mem_usage=True)
|
||||
|
||||
# With only one line to enable BigDL-LLM optimization on model
|
||||
model = optimize_model(model)
|
||||
|
||||
model = model.to('xpu')
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
# Generate predicted tokens
|
||||
with torch.inference_mode():
|
||||
prompt = REPLIT_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||
# ipex model needs a warmup, then inference time can be accurate
|
||||
output = model.generate(input_ids,
|
||||
max_new_tokens=args.n_predict)
|
||||
|
||||
# start inference
|
||||
st = time.time()
|
||||
output = model.generate(input_ids,
|
||||
max_new_tokens=args.n_predict)
|
||||
torch.xpu.synchronize()
|
||||
end = time.time()
|
||||
output = output.cpu()
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||
print(f'Inference time: {end-st} s')
|
||||
print('-'*20, 'Output', '-'*20)
|
||||
print(output_str)
|
||||
|
|
@ -0,0 +1,60 @@
|
|||
# StarCoder
|
||||
In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate StarCoder models. For illustration purposes, we utilize the [bigcode/starcoder](https://huggingface.co/bigcode/starcoder) as reference StarCoder models.
|
||||
|
||||
## Requirements
|
||||
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||
|
||||
## Example: Predict Tokens using `generate()` API
|
||||
In the example [generate.py](./generate.py), we show a basic use case for a StarCoder model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
|
||||
### 1. Install
|
||||
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
|
||||
|
||||
After installing conda, create a Python environment for BigDL-LLM:
|
||||
```bash
|
||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
||||
conda activate llm
|
||||
|
||||
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
|
||||
# you can install specific ipex/torch version for your need
|
||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables
|
||||
```bash
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
```
|
||||
|
||||
### 3. Run
|
||||
|
||||
For optimal performance on Arc, it is recommended to set several environment variables.
|
||||
|
||||
```bash
|
||||
export USE_XETLA=OFF
|
||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||
```
|
||||
|
||||
```bash
|
||||
python ./generate.py --prompt 'def print_hello_world():'
|
||||
```
|
||||
|
||||
In the example, several arguments can be passed to satisfy your requirements:
|
||||
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the StarCoder model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'bigcode/starcoder'`.
|
||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `def print_hello_world():'`.
|
||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||
|
||||
#### 2.3 Sample Output
|
||||
#### [bigcode/starcoder](https://huggingface.co/bigcode/starcoder)
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Output --------------------
|
||||
def print_hello_world():
|
||||
print("Hello World!")
|
||||
|
||||
|
||||
def print_hello_name(name):
|
||||
print(f"Hello {name}!")
|
||||
|
||||
|
||||
def print_
|
||||
```
|
||||
|
|
@ -0,0 +1,73 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
import intel_extension_for_pytorch as ipex
|
||||
import time
|
||||
import argparse
|
||||
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from bigdl.llm import optimize_model
|
||||
|
||||
# you could tune the prompt based on your own model,
|
||||
STARCODER_PROMPT_FORMAT = "{prompt}"
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for StarCoder model')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="bigcode/starcoder",
|
||||
help='The huggingface repo id for the StarCoder model to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--prompt', type=str, default="def print_hello_world():",
|
||||
help='Prompt to infer')
|
||||
parser.add_argument('--n-predict', type=int, default=32,
|
||||
help='Max tokens to predict')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
|
||||
# Load model
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||
trust_remote_code=True,
|
||||
torch_dtype='auto',
|
||||
low_cpu_mem_usage=True)
|
||||
|
||||
# With only one line to enable BigDL-LLM optimization on model
|
||||
model = optimize_model(model)
|
||||
|
||||
model = model.to('xpu')
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
# Generate predicted tokens
|
||||
with torch.inference_mode():
|
||||
prompt = STARCODER_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||
# ipex model needs a warmup, then inference time can be accurate
|
||||
output = model.generate(input_ids,
|
||||
max_new_tokens=args.n_predict)
|
||||
|
||||
# start inference
|
||||
st = time.time()
|
||||
output = model.generate(input_ids,
|
||||
max_new_tokens=args.n_predict)
|
||||
torch.xpu.synchronize()
|
||||
end = time.time()
|
||||
output = output.cpu()
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||
print(f'Inference time: {end-st} s')
|
||||
print('-'*20, 'Output', '-'*20)
|
||||
print(output_str)
|
||||
Loading…
Reference in a new issue