LLM: add dolly-v1 and dolly-v2 to gpu pytorch model example (#9153)
This commit is contained in:
		
							parent
							
								
									259cbb4126
								
							
						
					
					
						commit
						797b156a0d
					
				
					 4 changed files with 302 additions and 0 deletions
				
			
		| 
						 | 
				
			
			@ -0,0 +1,58 @@
 | 
			
		|||
# Dolly v1
 | 
			
		||||
In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate Dolly v1 models. For illustration purposes, we utilize the [databricks/dolly-v1-6b](https://huggingface.co/databricks/dolly-v1-6b) as reference Dolly v1 models.
 | 
			
		||||
 | 
			
		||||
## Requirements
 | 
			
		||||
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
			
		||||
 | 
			
		||||
## Example: Predict Tokens using `generate()` API
 | 
			
		||||
In the example [generate.py](./generate.py), we show a basic use case for a Dolly v1 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
 | 
			
		||||
### 1. Install
 | 
			
		||||
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
 | 
			
		||||
 | 
			
		||||
After installing conda, create a Python environment for BigDL-LLM:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.9 # recommend to use Python 3.9
 | 
			
		||||
conda activate llm
 | 
			
		||||
 | 
			
		||||
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
 | 
			
		||||
# you can install specific ipex/torch version for your need
 | 
			
		||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Configures OneAPI environment variables
 | 
			
		||||
```bash
 | 
			
		||||
source /opt/intel/oneapi/setvars.sh
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 3. Run
 | 
			
		||||
 | 
			
		||||
For optimal performance on Arc, it is recommended to set several environment variables.
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
export USE_XETLA=OFF
 | 
			
		||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
python ./generate.py --prompt 'What is AI?'
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
In the example, several arguments can be passed to satisfy your requirements:
 | 
			
		||||
 | 
			
		||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Dolly v1 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'databricks/dolly-v1-6b'`.
 | 
			
		||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
 | 
			
		||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
			
		||||
 | 
			
		||||
#### 2.3 Sample Output
 | 
			
		||||
#### [databricks/dolly-v1-6b](https://huggingface.co/databricks/dolly-v1-6b)
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
Below is an instruction that describes a task. Write a response that appropriately completes the request.
 | 
			
		||||
 | 
			
		||||
### Instruction:
 | 
			
		||||
What is AI?
 | 
			
		||||
 | 
			
		||||
### Response:
 | 
			
		||||
AI is an umbrella term for a variety of technologies that enable computers to think and act like humans. AI can be used to automate tasks, analyze data, and
 | 
			
		||||
```
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,87 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import intel_extension_for_pytorch as ipex
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
from transformers import AutoModelForCausalLM, AutoTokenizer
 | 
			
		||||
from bigdl.llm import optimize_model
 | 
			
		||||
 | 
			
		||||
# you could tune the prompt based on your own model,
 | 
			
		||||
# here the prompt tuning refers to https://huggingface.co/databricks/dolly-v1-6b#generate-text
 | 
			
		||||
DOLLY_V1_PROMPT_FORMAT = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
 | 
			
		||||
 | 
			
		||||
### Instruction:
 | 
			
		||||
{prompt}
 | 
			
		||||
 | 
			
		||||
### Response:
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Dolly v1 model')
 | 
			
		||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="databricks/dolly-v1-6b",
 | 
			
		||||
                        help='The huggingface repo id for the Dolly v1 model to be downloaded'
 | 
			
		||||
                             ', or the path to the huggingface checkpoint folder')
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="What is AI?",
 | 
			
		||||
                        help='Prompt to infer')
 | 
			
		||||
    parser.add_argument('--n-predict', type=int, default=32,
 | 
			
		||||
                        help='Max tokens to predict')
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
 | 
			
		||||
    # Load model
 | 
			
		||||
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
			
		||||
                                                 trust_remote_code=True,
 | 
			
		||||
                                                 torch_dtype='auto',
 | 
			
		||||
                                                 low_cpu_mem_usage=True)
 | 
			
		||||
 | 
			
		||||
    # With only one line to enable BigDL-LLM optimization on model
 | 
			
		||||
    model = optimize_model(model)
 | 
			
		||||
 | 
			
		||||
    model = model.to('xpu')
 | 
			
		||||
 | 
			
		||||
    # Load tokenizer
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    
 | 
			
		||||
    # Generate predicted tokens
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        prompt = DOLLY_V1_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
			
		||||
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
			
		||||
        end_key_token_id=tokenizer.encode("### End")[0]
 | 
			
		||||
        # ipex model needs a warmup, then inference time can be accurate
 | 
			
		||||
        output = model.generate(input_ids,
 | 
			
		||||
                                use_cache=True,
 | 
			
		||||
                                max_new_tokens=args.n_predict,
 | 
			
		||||
                                pad_token_id=tokenizer.pad_token_id,
 | 
			
		||||
                                eos_token_id=end_key_token_id)
 | 
			
		||||
 | 
			
		||||
        # start inference
 | 
			
		||||
        st = time.time()
 | 
			
		||||
        output = model.generate(input_ids,
 | 
			
		||||
                                use_cache=True,
 | 
			
		||||
                                max_new_tokens=args.n_predict,
 | 
			
		||||
                                pad_token_id=tokenizer.pad_token_id,
 | 
			
		||||
                                eos_token_id=end_key_token_id)
 | 
			
		||||
        torch.xpu.synchronize()
 | 
			
		||||
        end = time.time()
 | 
			
		||||
        output = output.cpu()
 | 
			
		||||
        output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
			
		||||
        print(f'Inference time: {end-st} s')
 | 
			
		||||
        print('-'*20, 'Output', '-'*20)
 | 
			
		||||
        print(output_str)
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,72 @@
 | 
			
		|||
# Dolly v2
 | 
			
		||||
In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate Dolly v2 models. For illustration purposes, we utilize the [databricks/dolly-v2-12b](https://huggingface.co/databricks/dolly-v2-12b) and [databricks/dolly-v2-7b](https://huggingface.co/databricks/dolly-v2-7b) as reference Dolly v2 models.
 | 
			
		||||
 | 
			
		||||
## Requirements
 | 
			
		||||
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
			
		||||
 | 
			
		||||
## Example: Predict Tokens using `generate()` API
 | 
			
		||||
In the example [generate.py](./generate.py), we show a basic use case for a Dolly v2 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
 | 
			
		||||
### 1. Install
 | 
			
		||||
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
 | 
			
		||||
 | 
			
		||||
After installing conda, create a Python environment for BigDL-LLM:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.9 # recommend to use Python 3.9
 | 
			
		||||
conda activate llm
 | 
			
		||||
 | 
			
		||||
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
 | 
			
		||||
# you can install specific ipex/torch version for your need
 | 
			
		||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Configures OneAPI environment variables
 | 
			
		||||
```bash
 | 
			
		||||
source /opt/intel/oneapi/setvars.sh
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 3. Run
 | 
			
		||||
 | 
			
		||||
For optimal performance on Arc, it is recommended to set several environment variables.
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
export USE_XETLA=OFF
 | 
			
		||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
python ./generate.py --prompt 'What is AI?'
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
In the example, several arguments can be passed to satisfy your requirements:
 | 
			
		||||
 | 
			
		||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Dolly v2 model (e.g. `databricks/dolly-v2-12b` and `databricks/dolly-v2-7b`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'databricks/dolly-v2-12b'`.
 | 
			
		||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
 | 
			
		||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
			
		||||
 | 
			
		||||
#### 2.3 Sample Output
 | 
			
		||||
 | 
			
		||||
#### [databricks/dolly-v2-12b](https://huggingface.co/databricks/dolly-v2-12b)
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
Below is an instruction that describes a task. Write a response that appropriately completes the request.
 | 
			
		||||
 | 
			
		||||
### Instruction:
 | 
			
		||||
What is AI?
 | 
			
		||||
 | 
			
		||||
### Response:
 | 
			
		||||
Artificial Intelligence (AI) is a term generally used to describe computer systems that can perform tasks that typically require human intelligence. AI has a broad range of applications
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### [databricks/dolly-v2-7b](https://huggingface.co/databricks/dolly-v2-7b)
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
Below is an instruction that describes a task. Write a response that appropriately completes the request.
 | 
			
		||||
 | 
			
		||||
### Instruction:
 | 
			
		||||
What is AI?
 | 
			
		||||
 | 
			
		||||
### Response:
 | 
			
		||||
Artificial Intelligence (AI) is a field of computer science, artificial intelligence, and robotics that focuses on understanding and mastering the principles of intelligence and making
 | 
			
		||||
```
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,85 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import intel_extension_for_pytorch as ipex
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
from transformers import AutoModelForCausalLM, AutoTokenizer
 | 
			
		||||
from bigdl.llm import optimize_model
 | 
			
		||||
 | 
			
		||||
# you could tune the prompt based on your own model,
 | 
			
		||||
# here the prompt tuning refers to https://huggingface.co/databricks/dolly-v2-12b/blob/main/instruct_pipeline.py#L15
 | 
			
		||||
DOLLY_V2_PROMPT_FORMAT = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
 | 
			
		||||
 | 
			
		||||
### Instruction:
 | 
			
		||||
{prompt}
 | 
			
		||||
 | 
			
		||||
### Response:
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Dolly v2 model')
 | 
			
		||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="databricks/dolly-v2-12b",
 | 
			
		||||
                        help='The huggingface repo id for the Dolly v2 (e.g. `databricks/dolly-v2-7b` and `databricks/dolly-v2-12b`) to be downloaded'
 | 
			
		||||
                             ', or the path to the huggingface checkpoint folder')
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="What is AI?",
 | 
			
		||||
                        help='Prompt to infer')
 | 
			
		||||
    parser.add_argument('--n-predict', type=int, default=32,
 | 
			
		||||
                        help='Max tokens to predict')
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
 | 
			
		||||
    # Load model
 | 
			
		||||
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
			
		||||
                                                 trust_remote_code=True,
 | 
			
		||||
                                                 torch_dtype='auto',
 | 
			
		||||
                                                 low_cpu_mem_usage=True)
 | 
			
		||||
 | 
			
		||||
    # With only one line to enable BigDL-LLM optimization on model
 | 
			
		||||
    model = optimize_model(model)
 | 
			
		||||
 | 
			
		||||
    model = model.to('xpu')
 | 
			
		||||
 | 
			
		||||
    # Load tokenizer
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    
 | 
			
		||||
    # Generate predicted tokens
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        prompt = DOLLY_V2_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
			
		||||
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
			
		||||
        end_key_token_id=tokenizer.encode("### End")[0]
 | 
			
		||||
        # ipex model needs a warmup, then inference time can be accurate
 | 
			
		||||
        output = model.generate(input_ids,
 | 
			
		||||
                                max_new_tokens=args.n_predict,
 | 
			
		||||
                                pad_token_id=tokenizer.pad_token_id,
 | 
			
		||||
                                eos_token_id=end_key_token_id)
 | 
			
		||||
 | 
			
		||||
        # start inference
 | 
			
		||||
        st = time.time()
 | 
			
		||||
        output = model.generate(input_ids,
 | 
			
		||||
                                max_new_tokens=args.n_predict,
 | 
			
		||||
                                pad_token_id=tokenizer.pad_token_id,
 | 
			
		||||
                                eos_token_id=end_key_token_id)
 | 
			
		||||
        torch.xpu.synchronize()
 | 
			
		||||
        end = time.time()
 | 
			
		||||
        output = output.cpu()
 | 
			
		||||
        output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
			
		||||
        print(f'Inference time: {end-st} s')
 | 
			
		||||
        print('-'*20, 'Output', '-'*20)
 | 
			
		||||
        print(output_str)
 | 
			
		||||
		Loading…
	
		Reference in a new issue