Add Qwen2.5 GPU example (#12101)
* Add Qwen2.5 GPU example * fix end line * fix description
This commit is contained in:
		
							parent
							
								
									b36359e2ab
								
							
						
					
					
						commit
						db7500bfd4
					
				
					 4 changed files with 257 additions and 2 deletions
				
			
		| 
						 | 
				
			
			@ -275,6 +275,7 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM
 | 
			
		|||
| Qwen       | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen)      | [link](python/llm/example/GPU/HuggingFace/LLM/qwen)       |
 | 
			
		||||
| Qwen1.5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen1.5) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen1.5) |
 | 
			
		||||
| Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) |
 | 
			
		||||
| Qwen2.5 |  | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2.5) |
 | 
			
		||||
| Qwen-VL    | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl)   | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen-vl)    |
 | 
			
		||||
| Qwen2-Audio    |  | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen2-audio)    |
 | 
			
		||||
| Aquila     | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila)    | [link](python/llm/example/GPU/HuggingFace/LLM/aquila)     |
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										164
									
								
								python/llm/example/GPU/HuggingFace/LLM/qwen2.5/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										164
									
								
								python/llm/example/GPU/HuggingFace/LLM/qwen2.5/README.md
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,164 @@
 | 
			
		|||
# Qwen2.5
 | 
			
		||||
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Qwen2.5 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct), [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) and [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) as reference Qwen2.5 models.
 | 
			
		||||
 | 
			
		||||
## 0. Requirements
 | 
			
		||||
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
 | 
			
		||||
 | 
			
		||||
## Example: Predict Tokens using `generate()` API
 | 
			
		||||
In the example [generate.py](./generate.py), we show a basic use case for a Qwen2.5 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
 | 
			
		||||
### 1. Install
 | 
			
		||||
#### 1.1 Installation on Linux
 | 
			
		||||
We suggest using conda to manage environment:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.11
 | 
			
		||||
conda activate llm
 | 
			
		||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
			
		||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 1.2 Installation on Windows
 | 
			
		||||
We suggest using conda to manage environment:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.11 libuv
 | 
			
		||||
conda activate llm
 | 
			
		||||
 | 
			
		||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
			
		||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Configures OneAPI environment variables for Linux
 | 
			
		||||
 | 
			
		||||
> [!NOTE]
 | 
			
		||||
> Skip this step if you are running on Windows.
 | 
			
		||||
 | 
			
		||||
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
source /opt/intel/oneapi/setvars.sh
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 3. Runtime Configurations
 | 
			
		||||
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
 | 
			
		||||
#### 3.1 Configurations for Linux
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
export USE_XETLA=OFF
 | 
			
		||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
			
		||||
export SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel Data Center GPU Max Series</summary>
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
 | 
			
		||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
			
		||||
export SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
export ENABLE_SDP_FUSION=1
 | 
			
		||||
```
 | 
			
		||||
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel iGPU</summary>
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
export SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
export BIGDL_LLM_XMX_DISABLED=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
#### 3.2 Configurations for Windows
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel iGPU</summary>
 | 
			
		||||
 | 
			
		||||
```cmd
 | 
			
		||||
set SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
set BIGDL_LLM_XMX_DISABLED=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel Arc™ A-Series Graphics</summary>
 | 
			
		||||
 | 
			
		||||
```cmd
 | 
			
		||||
set SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
> [!NOTE]
 | 
			
		||||
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
 | 
			
		||||
### 4. Running examples
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Arguments info:
 | 
			
		||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Qwen2.5 model (e.g. `Qwen/Qwen2.5-7B-Instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Qwen/Qwen2.5-7B-Instruct'`.
 | 
			
		||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
 | 
			
		||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
			
		||||
 | 
			
		||||
#### Sample Output
 | 
			
		||||
##### [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct)
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Prompt --------------------
 | 
			
		||||
AI是什么?
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
AI是Artificial Intelligence的缩写,意为“人工智能”,是指由人制造出来的系统,能够进行类似于人类智慧的行为,如学习、推理
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Prompt --------------------
 | 
			
		||||
What is AI?
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
AI, or Artificial Intelligence, refers to the ability exhibited by machines to imitate human behavior and intelligence. This includes learning, problem-solving, perception, understanding language
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
##### [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct)
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Prompt --------------------
 | 
			
		||||
AI是什么?
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
AI是“人工智能”(Artificial Intelligence)的缩写。它是一门研究如何创建智能机器的学科,这些机器能够执行通常需要人类
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Prompt --------------------
 | 
			
		||||
What is AI?
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
Artificial Intelligence (AI) refers to the simulation of human intelligence in machines that are programmed to think, learn, and perform tasks that typically require human intelligence.
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
##### [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct)
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Prompt --------------------
 | 
			
		||||
AI是什么?
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
AI是“人工智能”的简称,是指由人结合科学原理设计,并通过工程实践创造的能够完成特定任务的软件或硬件系统。这些系统
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Prompt --------------------
 | 
			
		||||
What is AI?
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
Artificial Intelligence (AI) refers to the development of computer systems that can perform tasks that would typically require human intelligence. These tasks can include things like visual perception
 | 
			
		||||
```
 | 
			
		||||
							
								
								
									
										90
									
								
								python/llm/example/GPU/HuggingFace/LLM/qwen2.5/generate.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										90
									
								
								python/llm/example/GPU/HuggingFace/LLM/qwen2.5/generate.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,90 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    parser = argparse.ArgumentParser(description='Predict Tokens using generate() API for Qwen2.5 model')
 | 
			
		||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen2.5-7B-Instruct",
 | 
			
		||||
                        help='The huggingface repo id for the Qwen2.5 model to be downloaded'
 | 
			
		||||
                             ', or the path to the huggingface checkpoint folder')
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="AI是什么?",
 | 
			
		||||
                        help='Prompt to infer') 
 | 
			
		||||
    parser.add_argument('--n-predict', type=int, default=32,
 | 
			
		||||
                        help='Max tokens to predict')
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    from ipex_llm.transformers import AutoModelForCausalLM
 | 
			
		||||
    # Load model in 4 bit,
 | 
			
		||||
    # which convert the relevant layers in the model into INT4 format
 | 
			
		||||
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
			
		||||
                                                 load_in_4bit=True,
 | 
			
		||||
                                                 optimize_model=True,
 | 
			
		||||
                                                 trust_remote_code=True,
 | 
			
		||||
                                                 use_cache=True)
 | 
			
		||||
    model = model.half().to("xpu")
 | 
			
		||||
 | 
			
		||||
    # Load tokenizer
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
			
		||||
                                              trust_remote_code=True)
 | 
			
		||||
    
 | 
			
		||||
    prompt = args.prompt
 | 
			
		||||
 | 
			
		||||
    # Generate predicted tokens
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        # The following code for generation is adapted from https://huggingface.co/Qwen/Qwen2.5-7B-Instruct#quickstart
 | 
			
		||||
        messages = [
 | 
			
		||||
            {"role": "system", "content": "You are a helpful assistant."},
 | 
			
		||||
            {"role": "user", "content": prompt}
 | 
			
		||||
        ]
 | 
			
		||||
        text = tokenizer.apply_chat_template(
 | 
			
		||||
            messages,
 | 
			
		||||
            tokenize=False,
 | 
			
		||||
            add_generation_prompt=True
 | 
			
		||||
        )
 | 
			
		||||
        model_inputs = tokenizer([text], return_tensors="pt").to("xpu")
 | 
			
		||||
        # warmup
 | 
			
		||||
        generated_ids = model.generate(
 | 
			
		||||
            model_inputs.input_ids,
 | 
			
		||||
            max_new_tokens=args.n_predict
 | 
			
		||||
        )
 | 
			
		||||
        
 | 
			
		||||
        st = time.time()
 | 
			
		||||
        generated_ids = model.generate(
 | 
			
		||||
            model_inputs.input_ids,
 | 
			
		||||
            max_new_tokens=args.n_predict
 | 
			
		||||
        )
 | 
			
		||||
        torch.xpu.synchronize()
 | 
			
		||||
        end = time.time()
 | 
			
		||||
        generated_ids = generated_ids.cpu()
 | 
			
		||||
        generated_ids = [
 | 
			
		||||
            output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
 | 
			
		||||
        ]
 | 
			
		||||
 | 
			
		||||
        response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
 | 
			
		||||
        print(f'Inference time: {end-st} s')
 | 
			
		||||
        print('-'*20, 'Prompt', '-'*20)
 | 
			
		||||
        print(prompt)
 | 
			
		||||
        print('-'*20, 'Output', '-'*20)
 | 
			
		||||
        print(response)
 | 
			
		||||
| 
						 | 
				
			
			@ -135,7 +135,7 @@ AI, or Artificial Intelligence, refers to the simulation of human intelligence i
 | 
			
		|||
 | 
			
		||||
##### [Qwen/Qwen2-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct)
 | 
			
		||||
```log
 | 
			
		||||
Inference time: 0.33887791633605957 s
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Prompt --------------------
 | 
			
		||||
AI是什么?
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
| 
						 | 
				
			
			@ -143,7 +143,7 @@ AI是人工智能的简称,是一种计算机科学和技术领域,旨在使
 | 
			
		|||
```
 | 
			
		||||
 | 
			
		||||
```log
 | 
			
		||||
Inference time: 0.340407133102417 s
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Prompt --------------------
 | 
			
		||||
What is AI?
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue