From db7500bfd44f3ade144b26216fc066480981cba7 Mon Sep 17 00:00:00 2001 From: "Jin, Qiao" <89779290+JinBridger@users.noreply.github.com> Date: Fri, 20 Sep 2024 15:55:57 +0800 Subject: [PATCH] Add Qwen2.5 GPU example (#12101) * Add Qwen2.5 GPU example * fix end line * fix description --- README.md | 1 + .../GPU/HuggingFace/LLM/qwen2.5/README.md | 164 ++++++++++++++++++ .../GPU/HuggingFace/LLM/qwen2.5/generate.py | 90 ++++++++++ .../GPU/HuggingFace/LLM/qwen2/README.md | 4 +- 4 files changed, 257 insertions(+), 2 deletions(-) create mode 100644 python/llm/example/GPU/HuggingFace/LLM/qwen2.5/README.md create mode 100644 python/llm/example/GPU/HuggingFace/LLM/qwen2.5/generate.py diff --git a/README.md b/README.md index 3d059d6b..b38c9f4e 100644 --- a/README.md +++ b/README.md @@ -275,6 +275,7 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM | Qwen | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen) | | Qwen1.5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen1.5) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen1.5) | | Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) | +| Qwen2.5 | | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2.5) | | Qwen-VL | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl) | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen-vl) | | Qwen2-Audio | | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen2-audio) | | Aquila | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila) | [link](python/llm/example/GPU/HuggingFace/LLM/aquila) | diff --git a/python/llm/example/GPU/HuggingFace/LLM/qwen2.5/README.md b/python/llm/example/GPU/HuggingFace/LLM/qwen2.5/README.md new file mode 100644 index 00000000..12052b33 --- /dev/null +++ b/python/llm/example/GPU/HuggingFace/LLM/qwen2.5/README.md @@ -0,0 +1,164 @@ +# Qwen2.5 +In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Qwen2.5 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct), [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) and [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) as reference Qwen2.5 models. + +## 0. Requirements +To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. + +## Example: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a Qwen2.5 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs. +### 1. Install +#### 1.1 Installation on Linux +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.11 +conda activate llm +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ +``` + +#### 1.2 Installation on Windows +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.11 libuv +conda activate llm + +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ +``` + +### 2. Configures OneAPI environment variables for Linux + +> [!NOTE] +> Skip this step if you are running on Windows. + +This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI. + +```bash +source /opt/intel/oneapi/setvars.sh +``` + +### 3. Runtime Configurations +For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. +#### 3.1 Configurations for Linux +
+ +For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series + +```bash +export USE_XETLA=OFF +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +export SYCL_CACHE_PERSISTENT=1 +``` + +
+ +
+ +For Intel Data Center GPU Max Series + +```bash +export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +export SYCL_CACHE_PERSISTENT=1 +export ENABLE_SDP_FUSION=1 +``` +> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`. +
+ +
+ +For Intel iGPU + +```bash +export SYCL_CACHE_PERSISTENT=1 +export BIGDL_LLM_XMX_DISABLED=1 +``` + +
+ +#### 3.2 Configurations for Windows +
+ +For Intel iGPU + +```cmd +set SYCL_CACHE_PERSISTENT=1 +set BIGDL_LLM_XMX_DISABLED=1 +``` + +
+ +
+ +For Intel Arc™ A-Series Graphics + +```cmd +set SYCL_CACHE_PERSISTENT=1 +``` + +
+ +> [!NOTE] +> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. +### 4. Running examples + +``` +python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT +``` + +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Qwen2.5 model (e.g. `Qwen/Qwen2.5-7B-Instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Qwen/Qwen2.5-7B-Instruct'`. +- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. + +#### Sample Output +##### [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +AI是什么? +-------------------- Output -------------------- +AI是Artificial Intelligence的缩写,意为“人工智能”,是指由人制造出来的系统,能够进行类似于人类智慧的行为,如学习、推理 +``` + +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +What is AI? +-------------------- Output -------------------- +AI, or Artificial Intelligence, refers to the ability exhibited by machines to imitate human behavior and intelligence. This includes learning, problem-solving, perception, understanding language +``` + +##### [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +AI是什么? +-------------------- Output -------------------- +AI是“人工智能”(Artificial Intelligence)的缩写。它是一门研究如何创建智能机器的学科,这些机器能够执行通常需要人类 +``` + +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +What is AI? +-------------------- Output -------------------- +Artificial Intelligence (AI) refers to the simulation of human intelligence in machines that are programmed to think, learn, and perform tasks that typically require human intelligence. +``` + +##### [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +AI是什么? +-------------------- Output -------------------- +AI是“人工智能”的简称,是指由人结合科学原理设计,并通过工程实践创造的能够完成特定任务的软件或硬件系统。这些系统 +``` + +```log +Inference time: xxxx s +-------------------- Prompt -------------------- +What is AI? +-------------------- Output -------------------- +Artificial Intelligence (AI) refers to the development of computer systems that can perform tasks that would typically require human intelligence. These tasks can include things like visual perception +``` \ No newline at end of file diff --git a/python/llm/example/GPU/HuggingFace/LLM/qwen2.5/generate.py b/python/llm/example/GPU/HuggingFace/LLM/qwen2.5/generate.py new file mode 100644 index 00000000..d1befbcb --- /dev/null +++ b/python/llm/example/GPU/HuggingFace/LLM/qwen2.5/generate.py @@ -0,0 +1,90 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse + +from transformers import AutoTokenizer + + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using generate() API for Qwen2.5 model') + parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen2.5-7B-Instruct", + help='The huggingface repo id for the Qwen2.5 model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="AI是什么?", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + + from ipex_llm.transformers import AutoModelForCausalLM + # Load model in 4 bit, + # which convert the relevant layers in the model into INT4 format + model = AutoModelForCausalLM.from_pretrained(model_path, + load_in_4bit=True, + optimize_model=True, + trust_remote_code=True, + use_cache=True) + model = model.half().to("xpu") + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, + trust_remote_code=True) + + prompt = args.prompt + + # Generate predicted tokens + with torch.inference_mode(): + # The following code for generation is adapted from https://huggingface.co/Qwen/Qwen2.5-7B-Instruct#quickstart + messages = [ + {"role": "system", "content": "You are a helpful assistant."}, + {"role": "user", "content": prompt} + ] + text = tokenizer.apply_chat_template( + messages, + tokenize=False, + add_generation_prompt=True + ) + model_inputs = tokenizer([text], return_tensors="pt").to("xpu") + # warmup + generated_ids = model.generate( + model_inputs.input_ids, + max_new_tokens=args.n_predict + ) + + st = time.time() + generated_ids = model.generate( + model_inputs.input_ids, + max_new_tokens=args.n_predict + ) + torch.xpu.synchronize() + end = time.time() + generated_ids = generated_ids.cpu() + generated_ids = [ + output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) + ] + + response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] + print(f'Inference time: {end-st} s') + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(response) diff --git a/python/llm/example/GPU/HuggingFace/LLM/qwen2/README.md b/python/llm/example/GPU/HuggingFace/LLM/qwen2/README.md index f0ae5e3e..8ade27f6 100644 --- a/python/llm/example/GPU/HuggingFace/LLM/qwen2/README.md +++ b/python/llm/example/GPU/HuggingFace/LLM/qwen2/README.md @@ -135,7 +135,7 @@ AI, or Artificial Intelligence, refers to the simulation of human intelligence i ##### [Qwen/Qwen2-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct) ```log -Inference time: 0.33887791633605957 s +Inference time: xxxx s -------------------- Prompt -------------------- AI是什么? -------------------- Output -------------------- @@ -143,7 +143,7 @@ AI是人工智能的简称,是一种计算机科学和技术领域,旨在使 ``` ```log -Inference time: 0.340407133102417 s +Inference time: xxxx s -------------------- Prompt -------------------- What is AI? -------------------- Output --------------------