[LM] Add stop_word for Qwen model and correct qwen chat format in chat.py (#9642)
* add stop words list for qwen * change qwen chat format
This commit is contained in:
		
							parent
							
								
									d5b81af7bd
								
							
						
					
					
						commit
						d57efd8eb9
					
				
					 1 changed files with 61 additions and 7 deletions
				
			
		| 
						 | 
				
			
			@ -57,8 +57,16 @@ from kv_cache import StartRecentKVCache
 | 
			
		|||
HUMAN_ID = "<human>"
 | 
			
		||||
BOT_ID = "<bot>"
 | 
			
		||||
 | 
			
		||||
def get_stop_words_ids(chat_format, tokenizer):
 | 
			
		||||
    # https://github.com/QwenLM/Qwen/blob/main/examples/vllm_wrapper.py#L23
 | 
			
		||||
    if chat_format == "Qwen":
 | 
			
		||||
        stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id], [tokenizer.eod_id]]
 | 
			
		||||
    else:
 | 
			
		||||
        raise NotImplementedError(f"Unknown chat format {chat_format!r}")
 | 
			
		||||
    return stop_words_ids
 | 
			
		||||
 | 
			
		||||
@torch.no_grad()
 | 
			
		||||
def greedy_generate(model, tokenizer, input_ids, past_key_values, max_gen_len):
 | 
			
		||||
def greedy_generate(model, tokenizer, input_ids, past_key_values, max_gen_len, stop_words=[]):
 | 
			
		||||
    print(Fore.BLUE+"BigDL-LLM: "+Fore.RESET, end="")
 | 
			
		||||
    outputs = model(
 | 
			
		||||
        input_ids=input_ids,
 | 
			
		||||
| 
						 | 
				
			
			@ -69,6 +77,7 @@ def greedy_generate(model, tokenizer, input_ids, past_key_values, max_gen_len):
 | 
			
		|||
    pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1)
 | 
			
		||||
    generated_ids = [pred_token_idx.item()]
 | 
			
		||||
    pos = 0
 | 
			
		||||
    stop = False
 | 
			
		||||
    for _ in range(max_gen_len - 1):
 | 
			
		||||
        outputs = model(
 | 
			
		||||
            input_ids=pred_token_idx,
 | 
			
		||||
| 
						 | 
				
			
			@ -78,6 +87,15 @@ def greedy_generate(model, tokenizer, input_ids, past_key_values, max_gen_len):
 | 
			
		|||
        past_key_values = outputs.past_key_values
 | 
			
		||||
        pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1)
 | 
			
		||||
        generated_ids.append(pred_token_idx.item())
 | 
			
		||||
 | 
			
		||||
        if stop_words is not None:
 | 
			
		||||
            for stop_str in stop_words:
 | 
			
		||||
                if generated_ids[-1 * len(stop_str):] == stop_str:
 | 
			
		||||
                    stop = True
 | 
			
		||||
                    break
 | 
			
		||||
            if stop:
 | 
			
		||||
                break
 | 
			
		||||
        
 | 
			
		||||
        generated_text = tokenizer.decode(generated_ids, skip_special_tokens=True,
 | 
			
		||||
                                          clean_up_tokenization_spaces=True,
 | 
			
		||||
                                          spaces_between_special_tokens=False)
 | 
			
		||||
| 
						 | 
				
			
			@ -96,11 +114,12 @@ def greedy_generate(model, tokenizer, input_ids, past_key_values, max_gen_len):
 | 
			
		|||
    return past_key_values
 | 
			
		||||
 | 
			
		||||
@torch.no_grad()
 | 
			
		||||
def stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512):
 | 
			
		||||
def stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512, stop_words=[]):
 | 
			
		||||
    past_key_values = None
 | 
			
		||||
    while True:
 | 
			
		||||
        user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
 | 
			
		||||
        if user_input == "stop": # let's stop the conversation when user input "stop"
 | 
			
		||||
        # let's stop the conversation when user input "stop"
 | 
			
		||||
        if user_input == "stop":
 | 
			
		||||
            break
 | 
			
		||||
        prompt = f"{HUMAN_ID} {user_input}\n{BOT_ID} "
 | 
			
		||||
        input_ids = tokenizer(prompt, return_tensors="pt").input_ids
 | 
			
		||||
| 
						 | 
				
			
			@ -110,7 +129,7 @@ def stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512):
 | 
			
		|||
            past_key_values = kv_cache.evict_for_space(past_key_values, space_needed)
 | 
			
		||||
 | 
			
		||||
        past_key_values = greedy_generate(
 | 
			
		||||
            model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len
 | 
			
		||||
            model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len, stop_words=stop_words
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
@torch.no_grad()
 | 
			
		||||
| 
						 | 
				
			
			@ -123,7 +142,8 @@ def chatglm2_stream_chat(model, tokenizer):
 | 
			
		|||
 | 
			
		||||
    while True:
 | 
			
		||||
        user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
 | 
			
		||||
        if user_input == "stop": # let's stop the conversation when user input "stop"
 | 
			
		||||
        # let's stop the conversation when user input "stop"
 | 
			
		||||
        if user_input == "stop":
 | 
			
		||||
            break
 | 
			
		||||
        print(Fore.BLUE+"BigDL-LLM: "+Fore.RESET, end="")
 | 
			
		||||
        prompt = f"问:{user_input}\n答:"
 | 
			
		||||
| 
						 | 
				
			
			@ -145,6 +165,34 @@ def chatglm2_stream_chat(model, tokenizer):
 | 
			
		|||
                    new_values_list.append(tuple(new_value))
 | 
			
		||||
                past_key_values = tuple(new_values_list)
 | 
			
		||||
 | 
			
		||||
@torch.no_grad()
 | 
			
		||||
def qwen_stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512, stop_words=[]):
 | 
			
		||||
    past_key_values = None
 | 
			
		||||
    while True:
 | 
			
		||||
        user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
 | 
			
		||||
        # let's stop the conversation when user input "stop"
 | 
			
		||||
        if user_input == "stop":
 | 
			
		||||
            break
 | 
			
		||||
        # https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/generation_config.json#L2
 | 
			
		||||
        prompt = f"""
 | 
			
		||||
            <|im_start|>system
 | 
			
		||||
            You are a helpful assistant.
 | 
			
		||||
            <|im_end|>
 | 
			
		||||
            <|im_start|>user
 | 
			
		||||
            {user_input}
 | 
			
		||||
            <|im_end|>
 | 
			
		||||
            <|im_start|>assistant
 | 
			
		||||
        """
 | 
			
		||||
        input_ids = tokenizer(prompt, return_tensors="pt").input_ids
 | 
			
		||||
        seq_len = input_ids.shape[1]
 | 
			
		||||
        if kv_cache is not None:
 | 
			
		||||
            space_needed = seq_len + max_gen_len
 | 
			
		||||
            past_key_values = kv_cache.evict_for_space(past_key_values, space_needed)
 | 
			
		||||
 | 
			
		||||
        past_key_values = greedy_generate(
 | 
			
		||||
            model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len, stop_words=stop_words
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
def auto_select_model(model_name):
 | 
			
		||||
    try:
 | 
			
		||||
        try:
 | 
			
		||||
| 
						 | 
				
			
			@ -168,19 +216,25 @@ def auto_select_model(model_name):
 | 
			
		|||
if __name__ == "__main__":
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser.add_argument("--model-path", type=str, help="path to an llm")
 | 
			
		||||
    parser.add_argument("--start-size", type=int, default=4, help="start_size of kv_cahce")
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    model_path = args.model_path
 | 
			
		||||
    start_size = args.start_size
 | 
			
		||||
 | 
			
		||||
    model = auto_select_model(model_path)
 | 
			
		||||
    model = optimize_model(model)
 | 
			
		||||
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
 | 
			
		||||
    if model.config.architectures is not None and model.config.architectures[0] == "ChatGLMModel":
 | 
			
		||||
    if model.config.architectures is not None and model.config.architectures[0] == "QWenLMHeadModel":
 | 
			
		||||
        stop_words = get_stop_words_ids("Qwen", tokenizer=tokenizer)
 | 
			
		||||
        kv_cache = StartRecentKVCache(start_size=start_size)
 | 
			
		||||
        qwen_stream_chat(model=model, tokenizer=tokenizer,kv_cache=kv_cache, stop_words=stop_words)
 | 
			
		||||
    elif model.config.architectures is not None and model.config.architectures[0] == "ChatGLMModel":
 | 
			
		||||
        chatglm2_stream_chat(model=model, tokenizer=tokenizer)
 | 
			
		||||
    else:
 | 
			
		||||
        kv_cache = StartRecentKVCache()
 | 
			
		||||
        kv_cache = StartRecentKVCache(start_size=start_size)
 | 
			
		||||
        stream_chat(model=model,
 | 
			
		||||
                    tokenizer=tokenizer,
 | 
			
		||||
                    kv_cache=kv_cache)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue