240 lines
9.9 KiB
Python
240 lines
9.9 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# Some parts of this file is adapted from
|
|
# https://github.com/mit-han-lab/streaming-llm/blob/main/examples/run_streaming_llama.py
|
|
# which is licensed under the MIT license:
|
|
#
|
|
# MIT License
|
|
#
|
|
# Copyright (c) 2023 MIT HAN Lab
|
|
#
|
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
# of this software and associated documentation files (the "Software"), to deal
|
|
# in the Software without restriction, including without limitation the rights
|
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
# copies of the Software, and to permit persons to whom the Software is
|
|
# furnished to do so, subject to the following conditions:
|
|
|
|
# The above copyright notice and this permission notice shall be included in all
|
|
# copies or substantial portions of the Software.
|
|
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
# SOFTWARE.
|
|
|
|
import torch
|
|
import argparse
|
|
import sys
|
|
|
|
# todo: support more model class
|
|
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, AutoConfig
|
|
from transformers import TextIteratorStreamer
|
|
from transformers.tools.agents import StopSequenceCriteria
|
|
from transformers.generation.stopping_criteria import StoppingCriteriaList
|
|
|
|
from colorama import Fore
|
|
|
|
from bigdl.llm import optimize_model
|
|
from kv_cache import StartRecentKVCache
|
|
|
|
HUMAN_ID = "<human>"
|
|
BOT_ID = "<bot>"
|
|
|
|
def get_stop_words_ids(chat_format, tokenizer):
|
|
# https://github.com/QwenLM/Qwen/blob/main/examples/vllm_wrapper.py#L23
|
|
if chat_format == "Qwen":
|
|
stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id], [tokenizer.eod_id]]
|
|
else:
|
|
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
|
return stop_words_ids
|
|
|
|
@torch.no_grad()
|
|
def greedy_generate(model, tokenizer, input_ids, past_key_values, max_gen_len, stop_words=[]):
|
|
print(Fore.BLUE+"BigDL-LLM: "+Fore.RESET, end="")
|
|
outputs = model(
|
|
input_ids=input_ids,
|
|
past_key_values=past_key_values,
|
|
use_cache=True,
|
|
)
|
|
past_key_values = outputs.past_key_values
|
|
pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1)
|
|
generated_ids = [pred_token_idx.item()]
|
|
pos = 0
|
|
stop = False
|
|
for _ in range(max_gen_len - 1):
|
|
outputs = model(
|
|
input_ids=pred_token_idx,
|
|
past_key_values=past_key_values,
|
|
use_cache=True,
|
|
)
|
|
past_key_values = outputs.past_key_values
|
|
pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1)
|
|
generated_ids.append(pred_token_idx.item())
|
|
|
|
if stop_words is not None:
|
|
for stop_str in stop_words:
|
|
if generated_ids[-1 * len(stop_str):] == stop_str:
|
|
stop = True
|
|
break
|
|
if stop:
|
|
break
|
|
|
|
generated_text = tokenizer.decode(generated_ids, skip_special_tokens=True,
|
|
clean_up_tokenization_spaces=True,
|
|
spaces_between_special_tokens=False)
|
|
|
|
now = len(generated_text) - 1
|
|
if now > pos:
|
|
if '\n<' in generated_text:
|
|
break
|
|
else:
|
|
print("".join(generated_text[pos:now]), end="", flush=True)
|
|
pos = now
|
|
|
|
if pred_token_idx == tokenizer.eos_token_id:
|
|
break
|
|
print(" ".join(generated_text[pos:]).strip('\n<'), flush=True)
|
|
return past_key_values
|
|
|
|
@torch.no_grad()
|
|
def stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512, stop_words=[]):
|
|
past_key_values = None
|
|
while True:
|
|
user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
|
|
# let's stop the conversation when user input "stop"
|
|
if user_input == "stop":
|
|
break
|
|
prompt = f"{HUMAN_ID} {user_input}\n{BOT_ID} "
|
|
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
|
seq_len = input_ids.shape[1]
|
|
if kv_cache is not None:
|
|
space_needed = seq_len + max_gen_len
|
|
past_key_values = kv_cache.evict_for_space(past_key_values, space_needed)
|
|
|
|
past_key_values = greedy_generate(
|
|
model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len, stop_words=stop_words
|
|
)
|
|
|
|
@torch.no_grad()
|
|
def chatglm2_stream_chat(model, tokenizer):
|
|
chat_history = []
|
|
past_key_values = None
|
|
current_length = 0
|
|
stopping_criteria = StoppingCriteriaList([StopSequenceCriteria(HUMAN_ID, tokenizer)])
|
|
max_past_length = 2048
|
|
|
|
while True:
|
|
user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
|
|
# let's stop the conversation when user input "stop"
|
|
if user_input == "stop":
|
|
break
|
|
print(Fore.BLUE+"BigDL-LLM: "+Fore.RESET, end="")
|
|
prompt = f"问:{user_input}\n答:"
|
|
for response, chat_history, past_key_values in model.stream_chat(tokenizer, prompt,
|
|
history=chat_history,
|
|
stopping_criteria=stopping_criteria,
|
|
past_key_values=past_key_values,
|
|
return_past_key_values=True):
|
|
print(response[current_length:], end="", flush=True)
|
|
current_length = len(response)
|
|
if past_key_values[0][0].shape[0] > max_past_length:
|
|
# To avoid out of memory, only keep recent key_values
|
|
new_values_list = []
|
|
for i in range(len(past_key_values)):
|
|
new_value = []
|
|
for val in past_key_values[i]:
|
|
new_v = val[-max_past_length:]
|
|
new_value.append(new_v)
|
|
new_values_list.append(tuple(new_value))
|
|
past_key_values = tuple(new_values_list)
|
|
|
|
@torch.no_grad()
|
|
def qwen_stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512, stop_words=[]):
|
|
past_key_values = None
|
|
while True:
|
|
user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
|
|
# let's stop the conversation when user input "stop"
|
|
if user_input == "stop":
|
|
break
|
|
# https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/generation_config.json#L2
|
|
prompt = f"""
|
|
<|im_start|>system
|
|
You are a helpful assistant.
|
|
<|im_end|>
|
|
<|im_start|>user
|
|
{user_input}
|
|
<|im_end|>
|
|
<|im_start|>assistant
|
|
"""
|
|
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
|
seq_len = input_ids.shape[1]
|
|
if kv_cache is not None:
|
|
space_needed = seq_len + max_gen_len
|
|
past_key_values = kv_cache.evict_for_space(past_key_values, space_needed)
|
|
|
|
past_key_values = greedy_generate(
|
|
model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len, stop_words=stop_words
|
|
)
|
|
|
|
def auto_select_model(model_name):
|
|
try:
|
|
try:
|
|
model = AutoModelForCausalLM.from_pretrained(model_path,
|
|
low_cpu_mem_usage=True,
|
|
torch_dtype="auto",
|
|
trust_remote_code=True,
|
|
use_cache=True)
|
|
except:
|
|
model = AutoModel.from_pretrained(model_path,
|
|
low_cpu_mem_usage=True,
|
|
torch_dtype="auto",
|
|
trust_remote_code=True,
|
|
use_cache=True)
|
|
except:
|
|
print("Sorry, the model you entered is not supported in installer.")
|
|
sys.exit()
|
|
|
|
return model
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--model-path", type=str, help="path to an llm")
|
|
parser.add_argument("--start-size", type=int, default=4, help="start_size of kv_cahce")
|
|
args = parser.parse_args()
|
|
|
|
model_path = args.model_path
|
|
start_size = args.start_size
|
|
|
|
model = auto_select_model(model_path)
|
|
model = optimize_model(model)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
|
|
if model.config.architectures is not None and model.config.architectures[0] == "QWenLMHeadModel":
|
|
stop_words = get_stop_words_ids("Qwen", tokenizer=tokenizer)
|
|
kv_cache = StartRecentKVCache(start_size=start_size)
|
|
qwen_stream_chat(model=model, tokenizer=tokenizer,kv_cache=kv_cache, stop_words=stop_words)
|
|
elif model.config.architectures is not None and model.config.architectures[0] == "ChatGLMModel":
|
|
chatglm2_stream_chat(model=model, tokenizer=tokenizer)
|
|
else:
|
|
kv_cache = StartRecentKVCache(start_size=start_size)
|
|
stream_chat(model=model,
|
|
tokenizer=tokenizer,
|
|
kv_cache=kv_cache)
|