[LM] Add stop_word for Qwen model and correct qwen chat format in chat.py (#9642)

* add stop words list for qwen

* change qwen chat format
This commit is contained in:
Ziteng Zhang 2023-12-15 14:53:58 +08:00 committed by GitHub
parent d5b81af7bd
commit d57efd8eb9

View file

@ -57,8 +57,16 @@ from kv_cache import StartRecentKVCache
HUMAN_ID = "<human>" HUMAN_ID = "<human>"
BOT_ID = "<bot>" BOT_ID = "<bot>"
def get_stop_words_ids(chat_format, tokenizer):
# https://github.com/QwenLM/Qwen/blob/main/examples/vllm_wrapper.py#L23
if chat_format == "Qwen":
stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id], [tokenizer.eod_id]]
else:
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
return stop_words_ids
@torch.no_grad() @torch.no_grad()
def greedy_generate(model, tokenizer, input_ids, past_key_values, max_gen_len): def greedy_generate(model, tokenizer, input_ids, past_key_values, max_gen_len, stop_words=[]):
print(Fore.BLUE+"BigDL-LLM: "+Fore.RESET, end="") print(Fore.BLUE+"BigDL-LLM: "+Fore.RESET, end="")
outputs = model( outputs = model(
input_ids=input_ids, input_ids=input_ids,
@ -69,6 +77,7 @@ def greedy_generate(model, tokenizer, input_ids, past_key_values, max_gen_len):
pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1) pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1)
generated_ids = [pred_token_idx.item()] generated_ids = [pred_token_idx.item()]
pos = 0 pos = 0
stop = False
for _ in range(max_gen_len - 1): for _ in range(max_gen_len - 1):
outputs = model( outputs = model(
input_ids=pred_token_idx, input_ids=pred_token_idx,
@ -78,6 +87,15 @@ def greedy_generate(model, tokenizer, input_ids, past_key_values, max_gen_len):
past_key_values = outputs.past_key_values past_key_values = outputs.past_key_values
pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1) pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1)
generated_ids.append(pred_token_idx.item()) generated_ids.append(pred_token_idx.item())
if stop_words is not None:
for stop_str in stop_words:
if generated_ids[-1 * len(stop_str):] == stop_str:
stop = True
break
if stop:
break
generated_text = tokenizer.decode(generated_ids, skip_special_tokens=True, generated_text = tokenizer.decode(generated_ids, skip_special_tokens=True,
clean_up_tokenization_spaces=True, clean_up_tokenization_spaces=True,
spaces_between_special_tokens=False) spaces_between_special_tokens=False)
@ -96,11 +114,12 @@ def greedy_generate(model, tokenizer, input_ids, past_key_values, max_gen_len):
return past_key_values return past_key_values
@torch.no_grad() @torch.no_grad()
def stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512): def stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512, stop_words=[]):
past_key_values = None past_key_values = None
while True: while True:
user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET) user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
if user_input == "stop": # let's stop the conversation when user input "stop" # let's stop the conversation when user input "stop"
if user_input == "stop":
break break
prompt = f"{HUMAN_ID} {user_input}\n{BOT_ID} " prompt = f"{HUMAN_ID} {user_input}\n{BOT_ID} "
input_ids = tokenizer(prompt, return_tensors="pt").input_ids input_ids = tokenizer(prompt, return_tensors="pt").input_ids
@ -110,7 +129,7 @@ def stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512):
past_key_values = kv_cache.evict_for_space(past_key_values, space_needed) past_key_values = kv_cache.evict_for_space(past_key_values, space_needed)
past_key_values = greedy_generate( past_key_values = greedy_generate(
model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len, stop_words=stop_words
) )
@torch.no_grad() @torch.no_grad()
@ -123,7 +142,8 @@ def chatglm2_stream_chat(model, tokenizer):
while True: while True:
user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET) user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
if user_input == "stop": # let's stop the conversation when user input "stop" # let's stop the conversation when user input "stop"
if user_input == "stop":
break break
print(Fore.BLUE+"BigDL-LLM: "+Fore.RESET, end="") print(Fore.BLUE+"BigDL-LLM: "+Fore.RESET, end="")
prompt = f"问:{user_input}\n答:" prompt = f"问:{user_input}\n答:"
@ -145,6 +165,34 @@ def chatglm2_stream_chat(model, tokenizer):
new_values_list.append(tuple(new_value)) new_values_list.append(tuple(new_value))
past_key_values = tuple(new_values_list) past_key_values = tuple(new_values_list)
@torch.no_grad()
def qwen_stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512, stop_words=[]):
past_key_values = None
while True:
user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
# let's stop the conversation when user input "stop"
if user_input == "stop":
break
# https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/generation_config.json#L2
prompt = f"""
<|im_start|>system
You are a helpful assistant.
<|im_end|>
<|im_start|>user
{user_input}
<|im_end|>
<|im_start|>assistant
"""
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
seq_len = input_ids.shape[1]
if kv_cache is not None:
space_needed = seq_len + max_gen_len
past_key_values = kv_cache.evict_for_space(past_key_values, space_needed)
past_key_values = greedy_generate(
model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len, stop_words=stop_words
)
def auto_select_model(model_name): def auto_select_model(model_name):
try: try:
try: try:
@ -168,19 +216,25 @@ def auto_select_model(model_name):
if __name__ == "__main__": if __name__ == "__main__":
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, help="path to an llm") parser.add_argument("--model-path", type=str, help="path to an llm")
parser.add_argument("--start-size", type=int, default=4, help="start_size of kv_cahce")
args = parser.parse_args() args = parser.parse_args()
model_path = args.model_path model_path = args.model_path
start_size = args.start_size
model = auto_select_model(model_path) model = auto_select_model(model_path)
model = optimize_model(model) model = optimize_model(model)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
if model.config.architectures is not None and model.config.architectures[0] == "ChatGLMModel": if model.config.architectures is not None and model.config.architectures[0] == "QWenLMHeadModel":
stop_words = get_stop_words_ids("Qwen", tokenizer=tokenizer)
kv_cache = StartRecentKVCache(start_size=start_size)
qwen_stream_chat(model=model, tokenizer=tokenizer,kv_cache=kv_cache, stop_words=stop_words)
elif model.config.architectures is not None and model.config.architectures[0] == "ChatGLMModel":
chatglm2_stream_chat(model=model, tokenizer=tokenizer) chatglm2_stream_chat(model=model, tokenizer=tokenizer)
else: else:
kv_cache = StartRecentKVCache() kv_cache = StartRecentKVCache(start_size=start_size)
stream_chat(model=model, stream_chat(model=model,
tokenizer=tokenizer, tokenizer=tokenizer,
kv_cache=kv_cache) kv_cache=kv_cache)